Micromobility

By Christopher Chorzepa and Phillip Washburn


Week 2 of the 2021 Law and Mobility Conference opened with a discussion, moderated by C. Ndu Ozor, focusing on a variety of topics: inequalities and equity issues in our transportation system, how to prevent new transportation tech from exacerbating these issues, and how new tech can potentially help correct injustices. 

Dr. Regan F. Patterson began the panel by highlighting that automobile-dominated systems have destructive impacts on Black people and communities, and that we must explicitly consider impacts on racial violence during the transition to other technologies. Dr. Patterson highlighted how cars are frequent sites of violence against Black people, as seen in the interactions between police and George Floyd, Sandra Bland, and countless others. Citing pieces by Tamika Butler and Brentin Mock, Dr. Patterson stressed that policymakers and developers of shared electric and automated vehicles (SEAVs) must explicitly think about whether this technology can make transportation safer for Black people and diminish racial violence. 

Sadly, transportation planning has long not accomplished these goals. It has been used as a tool of oppression, deliberately targeting Black communities. Highway construction destroyed Black neighborhoods and placed heavily trafficked highways closer to communities of color, resulting in environmental justice concerns due to high levels of emissions contributing to poor health outcomes. Further, Dr. Patterson framed climate change as a racial justice concern, since its impacts fall unevenly on the most vulnerable communities. She expressed a desire for a transportation system that reduces Black harm, affirms Black life, and ensures livable Black futures.

Dr. David Rojas-Rueda focused on how transportation policies and technologies shape public health. Dr. Rojas said that emerging transportation technologies should consider impacts on human health, focusing on how they impact urban design (surroundings and ability to get places affects health), human behavior (physical activity affects health), disease, and mortality from accidents. Examining micromobility, Dr. Rojas found that substitution to e-scooters — from bikes, public transit, or cars — may result in different impacts on health based on the current transportation composition of the city. 

In Atlanta, substitution to e-scooters was harmful because of increased risk of traffic fatalities and reduced physical activity. In contrast, it was beneficial in Portland because e-scooters were associated with fewer traffic incidents. Examining SEAVs, Dr. Rojas said that human health impacts will vary based on how we handle the transition. He highlighted that SEAVs might affect health by increasing autonomy of those who cannot drive (children, elderly, and disabled folks), reducing road deaths and injuries (although this would result in reduced organ donations), present presently unknown risks from increased exposure to electromagnetic fields, reducing stress from driving (but potentially increase stress through time spent working while commuting), and increasing use of alcohol and drugs (through reduced need for designated drivers). Dr. Rojas emphasized that we need to prioritize the deployment of SEAVs in low-income areas because road injuries and deaths tend to be more common in disadvantaged areas, and these communities have traditionally been underserved by transportation planning. Thus, the increased autonomy and reduced risk of road accidents from SEAVs would greatly benefit human health in disadvantaged neighborhoods.

Robin Chase stressed two problems: (1) there is an “unseen fifty percent” of the population that does not have access to safe and reliable transportation because they do not have a driver’s license or access to a car, or they do not have the money to gain access to a car or other form of transportation; and (2) whereas we used to have a background reality of a right to mobility, we have now made it safer to cross the ocean in a plane than to cross the road in an automobile, so that the unseen fifty percent is now unable to move without being subjected to high risk of injury or death. 

Ms. Chase proposed that we fix these problems by increasing access to shared mobility. She added that shared mobility would also have equity benefits, since using shared mobility would increase physical activity (putting a dent in the obesity epidemic, which disproportionately affects BIPOC), reduce the volume of traffic accidents (which also disproportionately affects BIPOC), and reduce emissions (climate change disproportionately affects BIPOC). Thus, she proposed that the government shift spending priorities away from SEAVs to public transit. Ms. Chase finished her presentation stressing the equity benefits derived from the implementation of emerging transportation technology while emphasizing the potential abuse for user data surveillance purposes assembled from digitized travel.

In discussion, the panelists highlighted that transportation inequities often exacerbate housing and employment inequities, and stressed that transportation and housing must be planned together to achieve the best outcomes for racial, health, and economic equity. Dr. Patterson noted that transit systems have often been used to facilitate gentrification and suburbanization, and stressed that there needs to be a solution like van-pooling services to get between housing centers and transit hubs to deal with these problems. 

The panelists agreed that disadvantaged communities need to be prioritized during transportation planning because transit improvements need to benefit everyone, not just affluent communities. Because public transit is used more intensively than SEAVs, government spending priorities need to shift if we want to do the most good for the most people. To that end, the panelists set a goal of allowing poor and Black people to safely live car-independent lives, rather than our current focus on providing subsidies to already rich people. For instance, we provide tax incentives to put solar panels on your home (benefitting homeowners) and buy an electric vehicle (benefitting car-owners).

The final issue considered by the panelists was how much startups and smaller companies should be regulated to pursue equity goals. Dr. Patterson stated that equity needs to be inserted into business models from the beginning because it traditionally has been ignored and led to inequitable outcomes. Otherwise, biased outcomes can be programmed into automated systems. Dr. Patterson firmly believed that switching course mid-stream is not feasible, and equity needs to be a primary consideration at the outset. Further, Dr. Rojas felt that policymaking should be proactive and made in an interdisciplinary function, incorporating equity and innovation concerns.

On the other hand, Ms. Chase felt that there should be a two-tiered regulation scheme with more onerous equity regulations for large companies and less red tape for startups. Ms. Chase emphasized that part of the problem faced by transportation startups is that they are not financially rewarded for their positive externalities on equity, while cars do not have to pay for the emissions, parking, and road damage they cause. Thus, she stated that companies with low volume and slim profit margins should receive less regulation so that they may grow and innovate. 

The question of when the government should require companies meet certain transportation goals is an important one. Soft-regulation can foster innovation, but may leave blind spots that persist past initial stages. Early and consistent regulation may end some startups before the get going, but would ensure the companies that survive have the right goals. Regardless of when it enters the stage, it is important that equity be part of all transit solutions.

Brave New Road: The Role of Technology in Achieving Safe and Just Transport Systems

Co-sponsored by the University of South Carolina School of Law

A Second Series of Streaming Events is Coming in May!
Register Here to Receive Streaming Links and Updates on Conference Events

How can new technologies help correct the many equity and equality issues facing our transportation system? How can we ensure the deployment of new technologies doesn’t exacerbate these existing issues?

Over the course of March, April, and May, experts and advocates will join together to discuss how to ensure emerging transportation technologies (Such as automated vehicles (“AVs”), micromobility, connected infrastructure, and unmanned aerial vehicles (“UAVs”)) are deployed in ways that focus on justice and safety for the communities they are operating in. This focus will include experts from a number of disciplines and focus on the safe systems approach, civil rights, equity, and the law and policy considerations related to those issues.

Coming in May

All events will be livestreamed via Zoom

Building (In)Roads – The Role of Communities in Transportation Policy

Rescheduled from March 30

Participants will discuss how individuals and communities approach transportation issues of all kinds, including the adoption of emerging technologies. How do we better understand community needs, and how they differ from the expectations of transportation policy planners? How do you engage communities and avoid or settle issues like “NIMBYism” or differing perspectives on various forms of transport? How are these issues different for urban, suburban, and rural areas?

Past Events

Week One - March 23 and 24
Does Newer Mean Better? - The Present and Future of Emerging Transportation Technologies
Tuesday, March 23 – 12:00 PM to 1:30 PM Eastern

Emerging Transportation Technologies, a Primer

A write-up of this panel is available here

Expert participants will provide an overview of emerging transportation technologies, focusing on AVs, micromobility, connected infrastructure, and UAVs. The discussion will include details on how these technologies work, their capabilities, and the technical, legal, and policy challenges they face when deployed in public. 

Moderator:

Emily Frascaroli, Managing Counsel, Product Litigation Group, Ford Motor Company (US)

Expert Participants:

Jennifer A. Dukarski, Shareholder, Butzel Long

Nira Pandya, Associate, Covington

Bryant Walker Smith, Co-Director of Law and Mobility Program, Associate Professor of Law, University of South Carolina Law School

Wednesday, March 24 – 12:00 PM to 1:00 PM Eastern

A Conversation with Paul C. Ajegba, Director, Michigan Department of Transportation

Join us in conversation with Paul C. Ajegba, P.E., Director of the Michigan Department of Transportation. Director Ajegba will discuss MDOT’s work with emerging technologies, as well as how the agency pursues community input and involvement in its projects, before taking time for audience Q&A.

Week Two - April 1
Getting From Here to There - Communities, Emerging Technologies, and Transportation Equity
Thursday, April 1 – 12:00 PM to 1:30 PM Eastern

Transportation Equity and Emerging Technologies

Expert participants will highlight the inequalities and equity issues that exist in our transportation system, how to prevent new transportation tech from exacerbating these issues, and how new tech can potentially help correct those injustices.

Moderator:

C. Ndu Ozor, Associate General Counsel, University of Michigan

Expert Participants:

Robin Chase, Transportation Entrepreneur, Co-Founder of Zipcar

Dr. David Rojas-Rueda, MD, MPH, PhD, Assistant Professor, Colorado State University

Dr. Regan F. Patterson, PhD, Transportation Equity Research Fellow, Congressional Black Caucus Foundation

Week Three - April 6 and 7
Where Do We Go From Here?
Tuesday, April 6 – 12:00 PM to 1:30 PM Eastern

Justice, Safety, and Transportation Policy

A write-up of this panel is available here

Building on what we’ve learned from the first two weeks, participants will focus on examining how transportation policy is generated and how policymakers can take a more active role in how new technology is deployed and used. This includes policy issues like policing, street and city design, and their intersection with technological adoption.

Moderator:

Ellen Partridge, Policy & Strategy Director, Shared-Use Mobility Center 

Expert Participants:

Justin Snowden, Mobility Expert, Former Chief of Mobility Strategy for the City of Detroit

Kelly Bartlett, Connected and Automated Vehicle Specialist, Michigan Department of Transportation

Kristin White, Connected and Automated Vehicles Executive Director, Minnesota Department of Transportation

Wednesday, April 7 – 12:00 PM to 12:30 PM Eastern

Challenging Algorithms in Court: A Conversation with Kevin De Liban

Join us for a conversation with Kevin De Liban, Director of Advocacy at Legal Aid of Arkansas, who will discuss his work on a successful challenge to Arkansas’s use of an algorithm to make decisions on Medicaid home-care benefits. Kevin will discuss how to approach legal challenges to algorithmic decision-making and what that could mean for emerging technologies. 

Several articles have been written over the past two years regarding shared micromobility electric scooters’ environmental impact. Some of the more phenomenal headlines were hyper-critical of electric scooters:

            Electric Scooters Aren’t Quite As Climate-Friendly As We Thought;

            Sorry, Scooters Aren’t So Climate-Friendly After All;

            Study: Electric Scooters Increase Carbon Emissions In Most Cases.

The report cited to support these assertions is one out of North Carolina State University with a similarly eye-catching title: “Are E-Scooters Polluters? The Environmental Impacts Of Shared Dockless Electric Scooters.” The study found that the greenhouse gas emissions associated with e-scooters were derived from four primary sources. The two largest impact categories — materials & manufacturing and collection & distribution emissions — accounted for over 90 percent of emissions. The two remaining categories were the transportation to the U.S. (most scooters are manufactured in China) and the actual emissions from scooter use and maintenance.

To me, that life cycle assessment is encouraging because scooter companies can reduce those two largest categories through practices on through production and operational changes. The truth of the environmental impact of electric scooters ultimately rests on the answer to a few simple questions:

  1. How are electric scooters manufactured?
  2. How long is the use-life of an electric scooter?
  3. What types of trips are electric scooters replacing?
  4. How are electric scooters collected, charged, and distributed?

These questions are interrelated and address overlapping issues. The answers are important for the future success of shared micromobility scooters as part of a mixed-transportation system. High on the list of goals that cities have set that they hope micromobility can help them reach are reduced traffic congestion and reduced emissions.

How are electric scooters manufactured?

This part of the life cycle of scooters may be difficult for cities to internalize and pressure scooter companies to change. Since the scooters are manufactured in China, and the raw materials are sourced outside the U.S., the immediate emission effects are not internalized in the United States. The direct effects are brought to bear in China and at the communities containing the mines for component materials. The component materials of a typical electric scooter include an aluminum frame (6.0kg), steel parts (1.4 kg), a lithium-ion battery (1.2 kg), an electric motor (1.2 kg), and tires with tubing (0.83 kg). Fifty percent of the emissions associated with electric scooters come from procuring the materials and manufacturing the actual scooter.

One way to reduce the emissions per passenger mile driven is to use the parts of decommissioned scooters to refurbish and extend other electric scooters’ lives. This will extend the parts’ life and reduce the need to procure and manufacture brand new scooters with new raw materials. Most of the scooter parts can be recycled if they cannot be reused in other scooters.  Uber has committed to recycling 90 percent of used spare parts from their “Jump” line of micromobility bikes and scooters. In the future, major micromobility providers should commit to using more recycled raw materials and components and to recycling the parts of e-scooters after they have outlived their working days. We cannot let what happened to bicycles in China happen to electric scooters in the United States.

How long is the life of an electric scooter?

Closely tied to the question of what goes into an electric scooter is: how long do scooters stay on the road? The longer a scooter can remain operational, the lower the average emissions per passenger miles traveled due to the sizeable portion of emissions being created up-front from materials and manufacturing. The less time a scooter is operating on the street, the higher the emissions per passenger mile traveled. When companies first distributed scooters around the U.S., the average life cycle was between one and three months. This short life was due in part to scooters being destroyed, thrown in rivers, and generally abused as they descended on cities, in addition to the expected wear and tear from everyday use. Over time, the scooters being manufactured and distributed have been made to be more durable and long-lasting. However, this can create a tradeoff with manufacturing emissions: to make more durable scooters that enjoy a longer street-life, more durable materials, and more energy must go into manufacturing, creating more emissions. If vehicles can last for two years before being decommissioned, the average per passenger-mile traveled is decreased by roughly 30 percent, according to the NCSU study. The tradeoff between increasing manufacturing inputs to extend the life of scooters is beneficial. Micromobility providers should continue spending resources developing more robust scooters that will need less maintenance and can remain in circulation longer to drive down average emissions continually. This solution should be supplemented by reusing parts, as discussed above. Using parts from older scooters to extend scooters’ lives on the street should be a priority for cities and micromobility companies. 

What trips are electric scooters replacing?

The benefits of electric scooters on transportation sector emissions depend mostly on what other transportation methods are being displaced. Suppose scooter trips only displace trips that otherwise would have been walking. In that case, scooters will never be an emission reducing solution. If e-scooters are only replacing automobile trips, scooters would always reduce net transportation emissions even at the current life cycle emissions assessment. Replacing ride-sharing and automobile trips decreases emissions (although this may not remain true as ride-hailing providers shift to using only zero-emission vehicles). Replacing what would otherwise be walking, bicycling, or public transportation trips results in more emissions from the transportation sector.

Several cities have studied this question during their scooter pilot programs. Chicago reported 43 percent of scooter trips replaced a trip that would have used ride-sharing service or personal vehicle. Thirty percent would have been walking trips, and 15 percent would have used public transportation. Portland found that 34 percent of local riders and 48 percent of visitors took an e-scooter instead of using a ride-hailing service or driving a personal vehicle. However, the city also reported that 42 percent would have walked or biked. Suppose scooters continue to and increasingly replace personal vehicle and ride-sharing trips. In that case, they will successfully help cities meet their goals of reducing traffic congestion and transportation emissions. However, in Ann Arbor, data shared by scooter companies has shown that scooters are not serving to replace vehicle trips or as the touted first-last mile solution. They are overwhelmingly replacing trips that otherwise would all be on foot: trips between on-campus academic buildings. This widespread use for scooters in college towns is an occurrence cities will need to address to meet their goals.

How are electric scooters collected, charged, and distributed?

Scooter companies approach collection, charging, and distribution in similar ways with minor variations. They employ people (either as employees or independent contractors) to drive around and collect scooters, take them somewhere (a central charging location or their home) to be charged overnight, and then use those people to drive around in the morning to redistribute the scooters. Cities often have requirements for the starting balance of scooters across the city to provide equitable access to communities underserved by public transportation. The additional miles driven by personal vehicles to find scooters, take them to be charged, and redistribute them in the morning accounted for 43 percent of scooters’ emissions impact.

There are several ways to address this enormous source of emissions. One method would require micromobility companies to make a similar move to Lyft: require their “chargers” (as Spin calls them) to drive an electric vehicle (or at least highly fuel-efficient cars) to reduce emissions from driving around. However, this would limit the number of people eligible to work in these roles, but that will change as electric vehicle models become more ubiquitous in the market this decade. Another solution is to minimize the distance between where scooters are picked up and dropped off. This may require greater segmentation or creating grids for collection and drop off.

The solution I like best requires investment and partnership between cities and scooter companies: installing public charging and storage corrals, and develop a reward charging program. At the entrances to metro stations, near bike-share drop-off areas, and other areas where morning demand is highest, scooter companies can work with cities to install corrals where scooters can be deposited and plugged into installed chargers. By sharing demand and usage data, scooter companies and cities can determine the best morning distribution locations and work in partnership to build central hubs for charging and collection.

Instead of hiring or contracting with vehicle drivers to pick up dozens of scooters, scooter companies should create rewards programs that incentivize users to drop off low-battery scooters at this location and plug them in to be charged. There will still be a need for drivers for scooters with bone-dry batteries. Still, users can relocate scooters with 10-20 percent juice to a charging corral at the end of a day in exchange for a free ride credit for later use. With the invigoration of reward and competition type apps, micromobility companies could incorporate features that “gamify” charging on foot instead of driving around in a vehicle.

Where we go from here

The conversation around the emissions associated with shared micromobility scooters needs to be reshaped. The industry has already come a long way since the first days of descending on cities like locusts. Cities are integrating scooters into their transit options; People have accepted them and approve of them; Scooters have great potential to reshape transportation. By adopting some of the suggestions I’ve proposed above, electric scooter companies can put to rest the idea that they aren’t a part of the solution to reduce the transportation sector’s emissions.

The first week and a half of the Biden administration has seen a flurry of activity: thirty executive orders and actions were taken in the first three days alone, with new announcements every day this week as well. Three of the earliest orders touched transportation and energy issues: an order promoting COVID-19 safety in domestic and international travel, an order to rejoin the Paris Climate Agreement, and an order that will block a permit for the Keystone XL pipeline and direct agencies to review more than 100 Trump executive actions on the environment.

Biden has nominated for Transportation Secretary Pete Buttigieg, who emphasized infrastructure in his campaign for the Democratic candidacy and touted a $21 million investment in “Smart Streets” to revitalize downtown South Bend as the city’s mayor. Biden has nominated as Secretary of Energy Jennifer Granholm, who, since serving as Michigan’s governor, has maintained a focus on renewable energy development, and, particularly, the electrification of American cars.

Among Biden’s most expensive proposals is his sweeping $1.7 trillion plan to tackle climate change. Biden’s executive orders on climate and the environment will freeze new oil and gas leases on federal lands; conserve at least 30% of federal lands and oceans by 2030; double wind energy production by 2030; and establish an interagency climate task force; all with a goal of achieving net-zero carbon emissions by 2050.

With climate, infrastructure, and clean energy jobs as guiding focuses, here is a preliminary view of the transportation policies that we can expect from the Biden Administration:

Electric Vehicles and Fuel Efficiency

Biden’s “Plan for a Clean Energy Revolution” includes a $400 billion investment in clean energy and innovation. A significant part of this plan is working toward the widespread use of electric vehicles.

Automakers expect a push for a new agreement to raise average fuel economy standards across fleets, which will require them to sell more electric vehicles. Under Trump’s standards, they would have had to show 1.5% fleetwide fuel economy increases from 2022-2025, which had been lowered from the 4.7% standard of the Obama Administration. There are currently around twenty fully electric vehicles for sale in the US, with many more expected to pop up in the next few years, including electric pickup truck models from GM, Ford, and Fiat Chrysler. Ford has pledged $11 billion to introduce a variety of new EVs, while GM has committed $27 billion to electric powertrains, vehicles, and autonomous systems through 2025.

On the manufacturing side, Biden hopes to make the U.S. a leader in electric vehicle production, with a goal of creating 1 million new jobs in the auto sector. On the consumer side, he has floated plans to offer rebates for consumers to replace conventional cars with electric vehicles. He has pledged to add 550,000 charging stations across the US.

Biden also plans to electrify the government fleet. In 2019 there were 645,000 civilian, military, and post office vehicles in the federal government’s fleet. Fulfilling this goal will create jobs in the industry, accomplish net-zero transportation-related carbon emissions for the federal government, and provide long-needed updates for postal workers. In anticipation of this plan, part of GM’s electric and autonomous vehicle investment will be in its defense unit, which relaunched in 2017.

Infrastructure

For decades, infrastructure development and maintenance has been synonymous with road funding. Attempting to break away from this pattern, Biden’s $2 trillion “Build Back Better” plan includes development goals for transit and power; upgrading and weatherizing buildings; constructing sustainable homes; innovating clean energy technology; streamlining agriculture; and expanding internet access.

Nicknamed “Amtrak Joe,” Biden’s infrastructure plan includes “sparking the second great railroad revolution.” He plans to work with Amtrak and private freight companies to electrify their fleets. Biden is also aiming to invest in quality public transportation in the roughly 315 American municipalities with populations of more than 100,000 by 2030.

Biden’s plan to expand broadband internet or wireless broadband via 5G also targets transportation and climate change by supporting a transition to remote work.  

An advisor to Biden recently announced that the Administration believes an infrastructure bill of up to $2 trillion is possible within Biden’s first 100 days. Absent legislation, the administration can still shape approximately $1 billion in Department of Transportation grants to promote this agenda; the Trump administration focused on road projects encouraging car travel with these grants.

Autonomous Vehicles

The Trump administration took a purposefully hands-off approach to regulating autonomous vehicles (AV). The National Highway Transportation Administration (NHTSA) promulgated voluntary guidance, which contained twelve safety elements for testing. Of the 66 companies with permits to test these vehicles in California, only 32 submitted these self-assessment reports, and not all of those were rigorous.

While there is not an explicit Biden plan on autonomous vehicles, Buttigieg’s infrastructure plan during his run included reassembling the Advisory Committee on Automation in Transportation, which Trump secretary Elaine Chao had disbanded, and proposing that NHTSA take on a strong federal role for the regulation and oversight of AV safety. A request for comments on AV safety in the waning days of the Trump Administration could be a jumping-off point for these plans.

Granholm has expressed concerns about the labor implications of AV, which could also shape the Biden Administration’s AV policies.

Micromobility

When campaigning, Biden promised to help cities “invest in infrastructure for pedestrians, cyclists, and riders of e-scooters and other micromobility vehicles.” The Biden Administration may therefore account for micromobility as part of is transportation and infrastructure policies.

One development in Congress in this area is the bipartisan Bicycle Commuter Act of 2021, which was recently introduced into the House. The Act would bring back and strengthen an expired pre-tax benefit program for bike commuters, increasing the benefit and ensuring that cyclists could be eligible for other transit coverage. This could be a starting point on micromobility.

Environmental Justice

The early actions of the Biden Administration demonstrate a focus on environmental justice unparalleled by any previous president. On Wednesday it was reported that Biden will sign an executive order establishing an interagency council on environmental justice, an office of health and climate equity in the Department of Health and Human Services, and an office of environmental justice at the Department of Justice. These orders will double down on the promises of a Clinton executive order to ensure that environmental justice considerations are a part of all federal projects. Biden’s clean energy plan includes a goal to support the health and wellbeing of those who have been impacted by fossil fuels, including advocating for new jobs in renewable energy in oil and gas towns. Biden’s infrastructure plan includes a goal of “disadvantaged communities” receiving 40% of the benefits of government spending on energy efficiency.

Accordingly, any of the Biden Administration’s transportation policies may need to account for disproportionate impacts on marginalized communities in the U.S.

Overall, achieving low carbon emissions, investing in sustainable infrastructure, and promoting environmental justice will be the central concerns of the Biden administration that will drive its transportation policy. While there is little in the way of specific policy on AV and micromobility, we are likely to see increased research and regulation in these and other emerging transportation areas.

Micromobility usage was at an all-time high before March 2020. The culmination of decades of growth and industry involvement in the United States resulted in nearly 350 million rides taken on shared bikes and scooters since 2010. The National Association of City Transportation Officials (NACTO) reported this astounding statistic in their Shared Micromobility in the U.S.: 2019 report.

In 2019, more than 134 million shared trips were taken, 60% higher than trips taken in 2018. NACTO reported the average trip in 2019 was 11-12 minutes, covering a distance of 1-1.5 miles. These numbers are significant because they represent trips that may otherwise have been taken by car. 46% of all U.S. car trips are under 3 miles. Replacing short vehicle trips with micromobility trips helps decrease carbon consumption. It can also increase access to new forms of transportation for low socioeconomic status and minority communities in cities.

However, micromobility in cities can and should be doing better. The adoption rates for Capital Bikeshare, a cheap and widely available bike-sharing service in Washington, D.C., is significantly lower among the Black and African-American population than among the White population. This is surprising at first when you consider that micromobility enjoys a positive perception from diverse groups of people.

However, positive perception does not always translate into access. Micromobility needs to be made widely available to all populations in the cities in which they operate. Many bike and scooter sharing services are dockless, and thus can be left almost anywhere. Many scooter companies rely on contract workers to pick up scooters at night when the batteries are dead, charge them overnight at their residence, and redistribute the scooters in the morning. This method allows the scooter companies to rebalance their fleet, and direct where scooters are first released in the morning, and how many scooters are dropped off in each area.

Logically, companies have figured out where scooters are ridden the most. They have access to incredible real-time demand and use data. But this can lead to a feedback loop. Suppose early micromobility adopters are predominately white, male, and young. In that case, scooters will be placed where that demographic is likely to find them first in the morning. In cities where scooter numbers have a firm cap, access to scooters is a zero-sum game for things like early morning work commutes or grocery runs.

One solution to the access problem is having cities work with micromobility companies to ensure scooters’ placement is not only profitable but equitable. Scooters should be located in all communities, not merely in ones that have shown early to use micromobility most frequently. These goals can be accomplished by cities working directly with the providers to access the data and share public-private goals. It could also be done by working with unbiased third-parties to make recommendations for what policies will make micromobility systems most widely available.

Something the current pandemic has provided micromobility companies is a different picture. The NACTO report found that micromobility usage in cities was utilized at higher rates when made free to essential workers. The most-used Citi bike stations were at hospitals in April. Black workers are disproportionally found among essential workers, and essential workers’ utilizing micromobility systems revealed new commuter patterns. The pandemic may provide a picture of what access should look like while simultaneously exposing micromobility systems to underserved communities as cheap and viable transportation options. There is clearly work to be done, and the information is out there. It is time to put the information to use.

By David Pimentel†, Michael B. Lowry†, Timothy W. Koglin†, and  Ronald W. Pimentel†


Cite as: David Pimentel, et al., Innovation in a Vacuum: The Uncertain Legal Landscape for Shared Micro-mobility, 2020 J. L. & MOB. 17.



Abstract

The last few years have seen an explosion in the number and size shared micro-mobility systems (“SMMS”) across the United States. Some of these systems have seen extraordinary success and the potential benefit of these systems to communities is considerable. However, SMMS have repeatedly ran into legal barriers that either prevent their implementation entirely, confuse and dissuade potential users, or otherwise limit SMMS’s potential positive impact.

This paper reflects a detailed study of state laws relating to SMMS and the platforms commonly used in these systems. The study uncovered many inconsistencies with micro-mobility laws across the country. Currently, many states lack clear definitions for these emerging forms of transportation, which do not otherwise fit neatly in the categories contemplated by existing law. Several states lack clear, state-level policies, which has led to discrepancies between state and local regulations. Further, there are several areas of micro-mobility law that are sharply inconsistent between states. All of these differences leave users confused as to what the law is and may discourage them from riding.

A number of states are attempting to remedy inconsistencies and legislative silence by passing and proposing laws that regulate the use of electric bikes (“e-bikes”) and electric scooters (“e-scooters”), but even these efforts are unlikely to bring the consistency that is needed. Federal authorities should act to create uniform laws and work with states to adopt them, otherwise, the lack of a legal infrastructure may threaten to stifle the innovation and undermine SMMS’s promised returns.

Introduction 1 1. Funding for this research was provided by a grant from the Pacific Northwest Transportation Consortium (PacTrans), USDOT Transportation Center for Federal Region 10. Additional funding for research assistance was provided by the University of Idaho College Of Law. Thanks also to Ken McLeod of the League of American Bicyclists, Andrew Glass Hastings of Remix, Steve Hoyt-McBeth and Briana Orr of the City of Portland, Chris A. Thomas of the law firm of Thomas, Coon, Newton and Frost, and Asha Weinstein Agrawal of San Jose State University, all of whom were generous with their time, responding to questions and requests and advising the authors on these topics. Credit for design and creation of the searchable state law database, and all the coding it required, belongs exclusively to Timothy Koglin. Thanks to Spencer Felton, Erin Hanson, Brandon Helgeson, Jacqueline Maurer, and Jamie Schwantes for outstanding research of the laws of all 50 states and of the District of Columbia, for populating the database, and for assistance in compiling the report and the early drafts of this paper. ×

The first bike-share programs in the United States appeared in 2010 and since then micro-mobility sharing of electric bikes (“e-bikes”) and electric scooters (“e-scooters”) has greatly expanded. 2 2. Alex Baca, What Cities Need to Understand About Bikeshare Now, Bloomberg Citylab (April 24, 2018, 10:17 AM), https://www.bloomberg.com/news/articles/2018-04-24/a-mostly-complete-taxonomy-of-bikeshare-so-far. × The legal environment, however, has been slow to embrace these innovations, or even to address them. The success or failure of shared micro-mobility systems (“SMMS”) may turn on the legal environment in which they attempt to operate. This study surveyed the laws governing bicycles, e-bikes (bicycles equipped with electric motors to assist in propulsion), and e-scooters (stand-up kick scooters powered by an electric motor) in all fifty states and the District of Columbia, and created a searchable database summarizing these laws as they may affect SMMS. The survey revealed serious issues and challenges for SMMS, as the development of the legal landscape has failed to keep pace with shared micro-mobility innovations.

Structure of the sharing systems

Two separate models of SMMS have emerged. Some systems have fixed docking stations where bicycles are picked up and returned. Other systems are “dockless,” and use GPS systems and cell phone apps to help users locate available bicycles. The user can leave the bicycle in almost any location when the trip is completed, and the next user can find and claim it for its next use. While bike-share systems have been implemented using both docking and dockless systems, e-bike and e-scooter systems overwhelmingly favor the dockless approach. It is common to see multiple systems using different mobility devices in operation side-by-side in the same municipality, essentially competing with each other. 3 3. Susan Shaheen & Adam Cohen, UC Berkeley: Transp. Sustainability Research Ctr., Shared Micromobility Policy Toolkit: Docked and Dockless Bike and Scooter Sharing (2019), https://escholarship.org/uc/item/00k897b5#main; Nicole DuPuis, Jason Griess & Connor Klein, Nat’l League of Cities, Micromobility in Cities: A History and Policy Overview (Laura Cofsky ed., 2019), https://www.nlc.org/sites/default/files/2019-04/CSAR_MicromobilityReport_FINAL.pdf. ×

These dockless systems raise additional challenges not seen in earlier docked systems. Docked systems typically require some level of municipal cooperation to provide land in ideal locations to place the docking stations as well as lengthy investments of time and capital to get the systems up and running. Dockless systems require none of these. Instead, they can pop-up in a city overnight with little to no notice to any government officials or the general public. This lack of notice and cooperation can lead to serious legal problems down the road.

Regardless of how the SMMS is structured, the legal regime that governs the use of the mobility – rules governing who can ride, where they can ride, how riders must be equipped, etc., as well as riders’ perception of those laws – can have an outsized impact on the success of the system. This project was aimed at ascertaining and analyzing these various laws across the country.

Potential benefits of shared micro-mobility

SMMS serve a wide variety of purposes, including flexible mobility, emission reductions, individual financial savings, reduced traffic congestion, reduced fuel use, health benefits, improved multimodal transport connections, “last mile” connection to public transport, and equity (greater accessibility for minority and lower-income communities). 4 4. Peter Midgley, Urban Mobility Advisor, Address at Global Consultation for Decision Makers on Implementing Sustainable Transport (2019), https://sustainabledevelopment.un.org/content/documents/4803Bike%20Sharing%20UN%20DESA.pdf; Benjamin Schneider, What Keeps Bike Share White, Bloomberg Citylab (July 14, 2017, 9:07 AM), https://www.citylab.com/equity/2017/07/what-keeps-bike-share-white/533412; James Woodcock, et al., Health Effects of the London Bicycle Sharing System: Health Impact Modelling Study, theBMJ (Feb. 13, 2014), https://www.bmj.com/content/348/bmj.g425. ×  Most of these objectives – with the exception of health benefits – are served equally well by e-bike and e-scooter sharing systems.

But while e-bikes and e-scooters cannot deliver the health benefits that would come from getting users to travel under their own power, they offer other benefits that traditional bicycles lack. These include (1) the ability to travel with minimal physical effort, (2) the ability to use without getting sweaty, (3) the capacity to travel longer distances or on hillier terrain, (4) the ability to use in all types of clothing (at least for e-scooters – which are compatible with dresses in a way that bicycles are not) and, (5) the promise of an entirely different level of fun. To the extent that these attractions lure people out of their cars, when traditional bicycles would not, these new micro-mobility sharing systems have the potential to generate societal benefits well beyond the promise of a basic bike-sharing system.

All of these benefits speak strongly in favor of SMMS, suggesting that local governments should be supportive of them. Indeed, some municipalities have invested heavily in these systems, subsidizing them, or otherwise committing public funds to their installation and operation. At the same time state and, to a lesser degree, local governments operate legal regimes that have the potential to undermine all these benefits, particularly where users receive confusing or mixed messages about what is legal and what is not.

This study

The research team set out to examine the relevant laws in all fifty states and the District of Columbia. It developed a list of questions related to sharing platforms, falling into nine categories: Definitions, Age Restrictions, Safety Equipment, Licensing Requirements, Where to Ride, Riding Under the Influence, Insurance Requirements, Sidewalk Clutter, and Shared Micro-Mobility Regulations. The research team then developed a database in Microsoft Access to facilitate the collection, storage and analysis of the state laws, and employed graduate students from the University Of Idaho College Of Law for the summer of 2019 to research the laws in each state and input them into the database.

The researchers used the LexisNexis legal database, Westlaw, and state-operated websites in each assigned jurisdiction to find the relevant laws. Since this is an emerging field of law, many states have legislation pending at various stages of the legislative cycle. For the purposes of this study, any laws that had been fully enacted by the state government were included as the relevant law, even if they had not yet gone into effect. Any laws that were pending in the state legislature or were awaiting the governor’s signature were not considered for this study.

The research team met weekly to discuss any unclear laws and to ensure that similar situations were logged in a consistent manner. After the states were completed, researchers checked a sampling of each other’s work to ensure that the data collection had been done in a consistent manner. Any and all discrepancies that were identified were raised for discussion, clarification, and ultimately harmonization.

Discussion

Even the most cursory review of the data collected reveals some compelling conflicts and gaps in the legal and regulatory regime that governs micro-mobility-sharing systems in the United States. These legal deficiencies threaten the success of such ventures, and limit society’s ability to achieve the myriad benefits that such innovations promise. Most of the examined laws regulate the use of micro-mobility (bikes, e-bikes, and e-scooters) and not sharing systems. While the problems discussed below do not apply exclusively to these shared systems, many of them are made exponentially more problematic because of the typical role shared mobility plays. The following discussion will highlight some of the largest legal problems and the specific difficulties they pose for the successful implementation of SMMS.

  1. Legal Inconsistency/Ambiguity

The most prevalent legal problems the study revealed were the numerous inconsistencies and ambiguities in the laws regulating the use of micro-mobility. Inconsistencies arise in a few distinct ways and each presents a slightly different problem to SMMS. Each of these inconsistencies is no more than a minor inconvenience to experienced riders who are either familiar with their local specifications, or know what kind of laws vary in different states and how to fill those gaps when riding in a new location. Anyone who has invested in a means of micro-mobility is likely to have invested some effort in learning the rules that govern its use. To misquote Socrates, they are wise because they know what they do not know.

However, the inexperienced or recreational rider, or the tourist, may be caught completely unaware of any variation or change in the law. Since these casual or inexperienced riders are the target market for most SMMS, inconsistent laws pose a potentially crippling impediment to their success. In our research laws were grouped into two categories. First, laws that are inconsistent with other laws in the same state, here called internal inconsistency. Second, laws that are inconsistent between states, here called external inconsistency – but perhaps better characterized as state-by-state variations in the law. Before addressing the external consistency issues, we will turn to the more acute problem of internal consistency: where even within a single state, sharp differences, ambiguities, and even conflicts exist in the applicable laws.

a. Internal inconsistency in the laws

While most laws are not facially inconsistent, several states’ statutory schemes create confusion that unnecessarily burdens riders. E-scooters in Oregon, for example, are banned from sidewalks and prohibited from traveling faster than 15 mph. But simultaneously, mobility devices used in the street are prohibited from traveling in the roadway at less than the normal speed of traffic. 5 5. Or. Rev. Stat. §§ 814.512-524 (2020) (Defining the offense of “unlawful operation of a motor assisted scooter.”). ×  Thus, if traffic flows at 25 mph, the scooter is required by law to travel no faster than 15 mph, but no slower than 25 mph. 6 6. The conflict is arguably reconciled Or. Rev. Stat. § 814.520, which suggests that a rider may avoid liability for the separate offense of “improper operation of a motor assisted scooter” for driving too slowly if she keeps as close to the right edge of the roadway as possible. But because it is not clear whether “improper operation” is the same offense as “unlawful operation,” the legal requirements remain, at best, ambiguous. At worst we have an outright conflict. ×   Even if there is a way to read these laws together consistently, it is certainly not clear at first glance. The resident who may want to use the new SMMS to help commute to work or the tourist who wants to use it to get around town cannot easily tell how fast or where they can ride.

Other issues can arise when a state does not clearly define e-bikes or e-scooters. Even when an e-bike or e-scooter is not defined by statute, it may fall within another statutory definition, such as motorcycle, moped, or more broadly, motor vehicle. This categorization can lead to more restrictive regulations of e-bikes and e-scooters, such as requiring driver’s licenses, registration, or insurance. For example, New York does not define e-bike or e-scooter. Because motor vehicles are defined as “every vehicle operated or driven upon a public highway which is propelled by any power other than muscular power,” e-bikes and e-scooters both fall within this category. 7 7. N.Y. Veh. & Traf. Law § 125 (McKinney 2020). ×  New York state law also requires that every motor vehicle be registered in order to drive on public highways. 8 8. N.Y. Veh. & Traf. Law § 401 (McKinney 2020). ×  However, as of 2019, the Department of Motor Vehicles did not allow for the registration of e-scooters or e-bikes, which appeared to render riding these devices in public illegal according to their website at the time. 9 9. Motorized devices that cannot be registered in New York, N.Y. State Dep’t of Motor Vehicles, https://web.archive.org/web/20190316092234/https:/dmv.ny.gov/re gistration/motorized-devices-cannot-be-registered-new-york (last visited July 25, 2020) (That agency site was recently changed to indicate that e-bikes may be operated “on some streets and highways in New York State,” and e-scooters will receive the same treatment later this year). Electric Scooters and Bicycles and Other Unregistered Vehicles, N.Y. State Dep’t of Motor Vehicles, https://dmv.ny.gov/registration/electric-scooters-and-bicycles-and-other-unregistered-vehicles (last visited July 25, 2020). ×  This is but one example of how bureaucratic operations can frustrate legislative actions. The inconsistency, in turn, is likely to result in user confusion.

Additionally, state laws can conflict with the laws of the state’s own counties or municipalities. In an emerging field such as shared micro-mobility, some city ordinances conflict directly with their state law. Direct conflicts are likely to occur when a city chooses a position quickly and the state subsequently adopts a contrary position that is incompatible with the local law without allowing for local variation of the matter. While the state law presumably supersedes the local ordinance, the conflicting local law remains on the books. A couple of examples may illustrate.

Sometimes a local law is more restrictive than a state law, so the discrepancy may not create a direct conflict. California state law, for example, identifies three classes of e-bikes and allows all to be ridden on sidewalks. 10 10. Cal. Veh. Code § 21207.5 (West 2020). ×  West Hollywood, CA, however, recently banned the use of all classes of e-bikes on sidewalks. 11 11. West Hollywood, Cal., Mun. Code § 10.04.030 (2020). ×  In this situation, it is possible for both laws to be valid, depending on whether the state law is read to pre-empt local variation or not. If not pre-empted, the local, more restrictive law simply imposes higher standards than required by the state. Nonetheless, the inconsistency can create difficulties for riders. In King County, Washington, for example, adult users of bicycles are required to wear helmets, but elsewhere in the state they are not. 12 12. King County, Wash., Bd. of Health Code § 9.10 (2018). ×  Once again, the SMMS user – i.e. an occasional or casual rider – is far more likely to be caught off guard.

Finally, state and local laws may define or classify mobility devices differently. For example, the city of Seattle defines e-bikes in a manner that does not mirror the three-category classification system for e-bikes adopted by the State of Washington. 13 13. Seattle, Wash., Mun. Code §11.14.055; Wash. Rev. Code Ann. § 46.04.169 (West 2020). ×  The definition provided by Seattle only encompasses what would be Class 1 and Class 2 e-bikes according to Washington State law, leaving Class 3 e-bikes outside of the city’s definition. This creates the potential for regulatory issues if Class 3 e-bikes are not considered e-bikes at all in Seattle, affecting riders’ abilities to ride on bicycle paths or be subject to other restrictions or protections offered to e-bike riders.

b. Externally inconsistent laws

The legal system has long grappled with the problem of state-by-state variations in the law. Some such variations have been celebrated, where local control has been hailed as a benefit of federalism. But there are limits to how and where such variation can or should be tolerated, and the problems of “external inconsistency” have at times demanded remedial attention. Sometimes the federal government has to step in and pre-empt the field, in order to achieve a desirable consistency in the law: examples include historically federal concerns, including bankruptcy, 14 14. See generally, Oleksandra Johnson, The Bankruptcy Code as Complete Preemption: The Ultimate Trump?, 81 Am. Bankr. L.J. 31 (2007). × securities and banking regulation, 15 15. Jay B. Sykes, Cong. Research Serv., R45081, Banking Law: An Overview of Federal Preemption in the Dual Banking System (January 23, 2018), https://fas.org/sgp/crs/misc/R45081.pdf. ×  immigration, 16 16. See generally, 8 U.S.C. ×  and national security. 17 17. See, e.g., USA PATRIOT Act, Pub. L. No. 107-56), 115 Stat. 272 (2001). In the 1990s, federal jurisdiction expanded to include violence against women. The inability to enforce restraining orders across state lines prompted Congress to federalize an area of law long reserved to the states. Lisa N. Sacco, Cong. Research Serv., The Violence Against Women Act (VAWA): Historical Overview, Funding, and Reauthorization, 3rd ed., (2019), https://fas.org/sgp/crs/misc/R45410.pdf. ×  Other times, states have chosen voluntarily to align their laws with each other’s: examples include the adoption of the Uniform Commercial Code. 18 18. States’ eagerness to facilitate commercial transactions for businesses within the state meant that states were happy to adopt a national standard, so interstate transactions could be more easily affected. At present 49 of the 50 states have adopted all or substantially all of the UCC. Tracey George & Russell Korobkin, Selections from the Restatement (Second) Contracts and Uniform Commercial Code, 4-5 (2019). ×  Similar efforts have yielded an overwhelmingly consistent motor vehicle code, making it easy for drivers to traverse the country without worrying that they will run afoul of obscure and idiosyncratic state laws. At the same time, some areas of law – such as Tort Law and Family Law – have been held to be squarely within the province of the states, where uniformity is not necessarily desirable as a matter of federalism. 19 19. Tort reform laws are all over the map, with all kinds of different approaches taken in the various states. Family Law, of course, has become a battleground as these local variations – affecting the rights of interracial, same-sex, and polygamous unions, among others – have come under attack for perceived violations of constitutional guarantees. See e.g. Reynolds v. U.S., 98 U.S. 145 (1879); Loving v. Virginia, 388 U.S. 1 (1967); Obergefell v. Hodges, 576 U.S. 644 (2015). ×  Justice Louis Brandeis famously praised this aspect of our federal system, noting that “a single courageous State may, if its citizens choose, serve as a laboratory; and try novel social and economic experiments without risk to the rest of the country.” 20 20. New State Ice Co. v. Liebmann, 285 U.S. 262, 311 (1932). ×

The “laboratories of democracy” concept has borne fruit for micro-mobility use. The state of Idaho adopted in 1982 its “Idaho stop law” that allows cyclists to treat “stop” signs as if they were “yield” signs, and to treat red lights as if they were “stop” signs. 21 21. Asmara M. Tekle, Roll On, Cyclist: The Idaho Rule, Traffic Law, and the Quest to Incentivize Urban Cycling, 92 Chi.-Kent L. Rev. 549 (2017). ×  The resounding success of this experiment has led other jurisdictions to follow suit. 22 22. Delaware has adopted the stoplight portion of the Idaho Stop, redubbing it the “Delaware Yield.” Del. Code Ann. tit. 21 § 4196A(c) (2020). Colorado State law specifically allows for local adoption of either the Idaho or Delaware models but does not adopt either at the state level. Colo. Rev. Stat. § 42-4-1412.5 (2019). Oregon has adopted the limited Delaware model. Or. Rev. Stat. §§ 814.414, 416 (2020). Arkansas has fully adopted the Idaho Stop. Ark. Code. Ann. § 27-51-1803 (2020). Washington has enacted legislation authorizing the Delaware version which will go into effect on Oct. 1, 2020. Increasing Mobility Through the Modification of Stop Sign Requirements for Bicyclists, 2020 Wash. Sess. Laws 6208. ×

At the same time, the patchwork of legal requirements for bicycle and other micro-mobility use in different states may sow confusion, particularly for travelers who may find themselves using bikeshare in different states, or in communities situated on a state border. Such issues arise, for example, on roads surrounding the Chipman Trail bike route, which connects Washington State University in Pullman, Washington (WSU), with the University of Idaho in Moscow, Idaho, eight miles east. At the start of a recent community-organized ride that started on the WSU campus, the riders had to be cautioned that they were in Washington now, and needed to stop at stop signs. 23 23. The Tour de Lentil, associated with the annual Lentil Festival in Pullman Washington, is a 50k/100k/150k ride that takes place every August. John Nelson, Tour de Lentil Provides Challenging Ride Through the Palouse, The Spokesman-Review (Aug. 11, 2017), https://www.spokesman.com/stories/2017/aug/11/tour-de-lentil-provides-challenging-ride-through-t/. The Fondo on the Palouse, a “century” (100-mile ride) which starts in Moscow, Idaho, encounters similar issues, as its route straddles the Washington-Idaho border. About the Fondo on the Palouse, The Fondo on the Palouse, http://fondopalouse.org/ (last visited July 19, 2020). ×  There, the ride was organized by a local cycling club who was familiar with the differences and intricacies of the two states’ laws, so the riders were able to prepare for the change in laws. However, if a solo rider or group of friends decided to take the bikes from WSU’s campus bike sharing program along that same trail for a Saturday ride, they would be unlikely to know that the governing laws had changed on them mid-ride. Absent a reminder or notification of some kind they are unlikely to even think to look up the law to see if there was any discrepancy.

While the laws governing cars are largely consistent across the country, inconsistency persists in the laws applying to bicycle use and even more so in those governing e-bike and e-scooter use. This is a particular concern given that a significant number of users of such systems are travelers and tourists – people from outside the relevant jurisdiction and therefore ill-equipped to know local laws. 24 24. Virginia Tech, Virginia Tech Capital Bikeshare Study: A Closer Look at Casual Users and Operations 10 (2012), https://ralphbu.files.wordpress.com/2012/01/vt-bike-share-study-final3.pdf. ×  Similar problems emerged in the early days of automobiles, and the need for consistent laws governing motor vehicle transportation became apparent. A special committee was appointed at the federal level to draw up a uniform code – one that facilitated effective automobile use – and pressure was put on the state legislatures across the country to adopt it. This eliminated idiosyncratic rules that may have existed in different cities and states and allowed manufacturers to produce vehicles that were legal in every state. 25 25. See J. Allen Davis, The California Vehicle Code and the Uniform Vehicle Code 14 Hastings L. J. 377 (1963). ×  Drivers could then have some confidence of the rules of the road when crossing state lines. While traffic laws are not entirely uniform in the U.S. (e.g. some states – including Washington, Oregon, and Idaho – allow left turns on red lights when the driver is turning onto a one-way street, for example), the exceptions are very few and largely minor.  Even the traffic signals and signage have been made standard across jurisdictions. 26 26. This standardization occurred over time as automobiles became more widespread. Clay McShane, The Origins and Globalization of Traffic Control Signals, 25 J. of Urban History 379, 389 (1999), https://sites.tufts.edu/carscultureplace2010/ files/2010/09/McShane-traffic-signals-1999.pdf. ×  Efforts to bring uniformity to the laws governing cycling – much less to the laws governing the use of e-bikes, e-scooters, or SMMS in general – have yet to bear fruit.

Laws that dictate where each platform can and cannot be ridden, “where to ride” laws, present particularly troublesome external inconsistency. Most states allow bicycles to be ridden on the sidewalk or the street so the rider can choose to ride where they feel the most comfortable. However, e-bikes and e-scooters, the primary platforms for dockless SMMS, are restricted much more and far less consistently. E-bikes are burdened slightly, as in about half of states they cannot be ridden on sidewalks. E-scooters, as the newest platform on the scene, are treated the most inconsistently. Over a third of states do not have any regulation at all regarding where e-scooters are allowed. 27 27. See infra Section 2.b. and Figure 4. ×  In those states that do address e-scooters, about half allow them to be ridden on the street and half do not. A handful of states prohibit e-scooter use on the shoulder of the road or the bike lanes. Twenty-three states allow e-scooters to be ridden on sidewalks while six prohibit their use there; the remaining states are silent on the issue. If an individual purchases one of these platforms, especially an e-scooter, it is reasonable to expect that they would look up the rules for the use of their new device in their own state. 28 28. A neighbor of author David Pimentel, however, acquired a motorized scooter in 2019, and after a discussion with a police officer, is now afraid to ride it anywhere. The police officer was unable to advise him where, or whether, such a vehicle could be used in the city limits. ×  However, it seems far less likely that the typical SMMS user would know the details about where they are allowed to ride or take the time to research the question, even if it were easy to find answers, which it often is not. Further, many riders who do not know where they can ride may forgo using the SMMS altogether because of their questions.

Other types of laws also raise external inconsistency issues. For instance, helmet laws vary dramatically in various states (see Figures 1.1 and 1.2). In over 20 states, there is no requirement that anyone wear a helmet when using a bicycle, an e-bike, or an e-scooter. Many states impose helmet requirements on bicycle riders under a certain age. Six states require helmets for all users of e-bikes.

FIGURE 1.1 – Mandatory Helmet Laws

Helmets are required . . .

FIGURE 1.2 – Mandatory Helmet Laws

Helmets are required . . .

Laws requiring helmet use can be particularly burdensome for bike-sharing systems because the typical user does not carry a helmet with her/him. 29 29. Gigi Douban, A Pothole for Bike-Sharing Programs: Helmets, Marketplace Morning Report (Sep. 4, 2015), https://www.marketplace.org/2015/09/04/business/pothole-bike-sharing-programs-helmets/; David Gutman, Will Helmet Law Kill Seattle’s New Bike-Share Program?, Seattle Times (Dec. 19, 2016), https://www.seattletimes.com/seattle-news/transportation/will-helmet-law-kill-seattles-new-bike-share-program/; Emily Elias, Helmets Pose Challenge For Vancouver Bike Share Program, CBC (July 19, 2013) https://www.cbc.ca/news/canada/british-columbia/helmets-pose-challenge-for-vancouver-bike-share-program-1.1379433. × Attempts to share helmets along with bikes have not been well received by the public, presumably because of concerns about the cleanliness of shared helmets. 30 30. Gutman, supra note 29. × Some speculate that the failure of Seattle’s first bike-share venture was due to the strictures of the mandatory helmet law there; 31 31. Id. × more recent success with SMMS in Seattle may be due to local police’s decision to relax their enforcement of King County’s mandatory helmet laws. 32 32. David Gutman, Helmets may be Seattle Law, but Many Bike-Share Riders Don’t Wear Them, Seattle Times, (Aug. 9, 2017), https://www.seattletimes.com/seattle-news/transportation/helmets-may-be-seattle-law-but-many-bike-share-riders-dont-wear-them/. ×

The “ins.tructions” commonly provided by the micro-mobility sharing services are unhelpful on this score, as they may simply tell the user to wear a helmet, without indicating whether the helmet is required by law (e.g. the instruction video for Bird scooters, inside the Bird app, includes a “Bring your own helmet” instruction, without further elaboration to clarify whether this is a legal requirement or just a prudent recommendation). 33 33. App: Bird, How to Ride, (Bird Rides, Inc.) (available on Google Play or the Apple App Store), www.bird.co/how/. × This uncertainty can serve as a deterrent to would-be riders. 34 34. Ronald W. Pimentel, Michael B. Lowry, David Pimentel, Amanda K. Glazer, Timothy W. Koglin, Grace A. Moe, & Marianna M. Knysh, If You Provide, Will They Ride? Motivators and Deterrents to Shared Micro-Mobility, 6 Int’l J. Bus & Applied Soc. Sci. 26, 31 (2020). ×

E-bike and e-scooter riders also face uncertainty about the application of Driving Under the Influence (“DUI”) laws. In many states, it is not at all clear whether the e-bikes and e-scooters qualify as “motor vehicles” for purposes of DUI statutes. A small handful of states have attempted to clarify this by passing separate laws governing Riding Under the Influence (“RUI”), which explicitly apply to micro-mobility users. These laws typically impose lesser punishments for RUI than the state imposes for DUI violations, which makes sense since an intoxicated driver is endangering the lives of others (pedestrians, car passengers, etc.) at a level far beyond the dangers posed by an intoxicated e-scooter rider. A general breakdown of state law treatment of these issues is shown in Figure 2.

FIGURE 2 – “Riding Under the Influence” Legislation*

*A few states have both RUI laws specifically applicable to micro-mobility, and separate DUI laws that apply equally to micro-mobility, introducing potential for contradiction and inconsistency (see discussion of such issues above). The states that fall into both the DUI and the RUI categories are depicted in the “RUI Law Applies” section of the pie charts above.

Naturally, some level of inconsistency is necessary. Not every community has the same needs, and the laws that are appropriate in New York City may not be appropriate in Moscow, Idaho (pop. 24,000). However, a common foundation of legal rules for micro-mobility use, short of complete uniformity, is important if those transportation modalities are to take hold in American cities. For instance, some kind of baseline system that applies broadly but allows for limited local variation based on the specific needs of the location, where those local variations could be clearly demonstrated to potential riders, would go a long way to solving both internal and external inconsistency issues.

  1. (Lack of) Awareness of the law

Even if inconsistent laws were aligned, micro-mobility users still might not know what the laws are. Someone who is unaware of the law will have difficulty complying with it and, as noted above, the uncertainty may scare riders off altogether.

a. Ignorance and (mis)perception of the applicable laws

It is far from clear, even for a lawyer trained to interpret statutes, which existing laws may apply to a particular mode of micro-mobility. In some states, the term “pedestrian” is interpreted to include bicyclists on sidewalks, so laws that give pedestrians the right-of-way simultaneously give bicyclists the right-of-way. 35 35. E.g. Mich. Comp. Laws § 257.660c (2020). × In thirty-five states, the word “vehicle” is interpreted to include bicycles, which lumps bicycles in with other vehicles and subjects them to the laws governing vehicular traffic. 36 36. E.g. Or. Rev. Stat. § 814.400 (2020). ×

As for e-bikes and e-scooters, the problem is even more difficult. Because most of these laws were passed before e-bikes and e-scooters came on the market, laws cannot reflect the legislature’s intention concerning them. Pullman, Washington, requires that all scooters be equipped with a “muffler,” for example, in an ordinance that must have been drafted during an era of gas-powered scooters; 37 37. Pullman, Wash., Code § 12.11.020(8) (2019). × it is, of course, a ridiculous requirement to impose on virtually silent e-scooters. Even the most well-informed user is left to wonder whether an e-bike is a “motor-driven cycle” within the meaning of the statute, for example, or whether an e-scooter is a “motor vehicle.” Exacerbating the problem, there does not appear to be any consensus or consistency, state-by-state, on what these terms mean.

Potential users of SMMS being unaware of the laws governing the mobility presents two separate problems. The first is that users may unwittingly violate the law. They may assume that e-scooters are legal on sidewalks, and ride them there, illegally disrupting pedestrian traffic and unwittingly subjecting themselves to liability. The second concern is that the uncertainty itself will be a deterrent to use of the mobility. A potential user may be tempted to rent a scooter or a bike but may err on the side of caution and avoid using the device altogether when unsure of whether it’s legal to ride without a helmet, or to ride without a driver’s license, or to ride on the running path that goes through the park or along the river. A July 2019 survey of users and non-users in the Northwest suggest that uncertainty about the law can significantly discourage use of SMMS. 38 38. Pimentel, supra note 34, at 31. × Uncertainty about where it is legal to ride provides at least a slight deterrent effect for 74% of potential users (See Figure 3).

FIGURE 3 – Deterrent Effect of Legal Uncertainty

b. Statutory silence

The lack of legislation in many jurisdictions leaves both the purveyors of SMMS and their customers in the dark about what is legal and what is not. The laws are reasonably comprehensive as they apply to bicycles, but significant gaps exist for newer technologies, particularly e-scooters, which do not fit so easily into pre-existing categories. While some states are already working to get laws on the books that govern the use of such mobility, many more legislatures either have failed to perceive a need or have been unwilling or unable to muster the political will or material resources to respond to it. Figure 4 shows the conspicuous gaps which exist in several states’ legislation regarding where riders can use various devices, particularly e-scooters. It unrealistic to expect states to have comprehensive legal regimes in place regarding these newer devices; it is understandable that legislatures may have trouble keeping up with new technologies. However, SMMS will be hamstrung in any states that fail to grapple with basic issues, such whether these devices can be ridden on their sidewalks, or on their streets, or on both, or on neither.

FIGURE 4 – Where to Ride Table

c. Emerging legislation

By 2019, new laws were in the works in a number of states. New York’s legislature introduced a bill that defined “bicycles with electric assist” and “electric scooters,” stipulating that e-bikes are subject to the same regulations as bicycles while e-scooters are subject to new regulations laid out in the bill. 39 39. S.B. 5294 (N.Y. 2019). The bill was vetoed by the Governor in December 2019. × The Hawaiian legislature introduced two separate bills to govern the use of these devices. The first set a minimum age of fifteen for e-bike riders, and included e-bikes within the definition of bicycles, thus subjecting them to most of the same regulations that govern non-motorized bicycles. 40 40. H.B. 812 (Haw. 2019). × The second defined “electric foot scooters,” set a minimum riding age of fifteen, and subjected e-scooters to many of the same laws that govern bicycles. 41 41. H.B. 754 (Haw. 2019). × Similarly, Alaska introduced a bill that defined e-bikes without a classification system, and clarified that they are not motor vehicles or subject to any registration requirements. 42 42. H.B. 123 (Alaska 2019) ×

The wave of new legislation presents both challenges and opportunities for SMMS. If the laws passed aid the implementation and operation of SMMS or facilitate the platforms that they use, then SMMS may be well on their way to becoming a permanent fixture of American cities. Additionally, states have the opportunity to see what laws are the most successful and to copy them, laying the groundwork for a more consistent, if not entirely uniform system. One example is the three-tiered e-bike classification system. This system was first implemented in California in 2015 and has since been adopted almost completely in twenty-five other states, making it by far the most common classification system. 43 43. Claudia Wasko, Why More States Need to Adopt the Three-Class Ebike System, Bosch, https://www.bosch-ebike.com/us/everything-about-the-ebike/stories/three-class -ebike-system/# (“In 2015, California was the first state to adopt this ‘3-Class’ approach, and since then, 25 other states followed suit: Arizona, Arkansas, California, Colorado, Connecticut, Florida, Georgia, Idaho, Illinois, Indiana, Maine, Maryland, Michigan, New Hampshire, New Jersey, Ohio, Oklahoma, South Dakota, Tennessee, Texas, Utah, Virginia, Washington, West Virginia, Wisconsin and Wyoming.”). × A consistent and coherent classification system is a prerequisite to any unified e-bike laws that could come in the future. However, advocates (including SMMS providers) must act quickly to lobby for favorable laws, as it will become much harder to implement favorable laws after states have enacted barriers.

  1. Laws addressing shared micro-mobility implementation and use directly

Some states have adopted laws that focus on sharing systems, recognizing the difference between regulating e-bike or e-scooter use and regulating the businesses or systems set up to share them. As of this writing, Alabama is the only state that has comprehensive shared micro-mobility law that covers bicycles, e-bikes, and e-scooters. Four other states, Arkansas, Nevada, Utah, and Washington, have enacted statewide regulations concerning e-scooter sharing systems exclusively. However, most states’ statutory schemes are either silent on this issue or leave the regulation of these systems to the local government.

Without any laws regulating the sharing systems directly, many problems are likely to arise which are specific to SMMS. One such problem is the “pop-up” SMMS start-ups. Without statewide regulations in place, SMMS providers may be able to enter a market more or less overnight with no warning to the local government. This presents a number of problems, many of which have already been discussed. These problems can be prevented with simple state-wide schemes which include regulations for startup procedures that allow SMMS to operate but require additional cooperation between the providers and the cities they serve.

Even when states do enact SMMS-specific laws, another issue emerges: shared micro-mobility laws that differ from the existing laws. For example, Alabama defines a “scooter” as:

[A] device weighing less than 100 pounds that satisfies all of the following:

(a)  [h]as handlebars and an electric motor;

(b)  [i]s solely powered by the electric motor or human power; [and]

(c)  [h]as a maximum speed of no more than 20 mph on a paved level surface when powered solely by the electric motor. 44 44. Ala. Code § 32-1-1.1(60) (2020). ×

By this definition, an e-scooter would qualify simultaneously as a “scooter” and as a motor vehicle in the Alabama Code. 45 45. Ala. Code § 32-1-1.1(33) (2020). × Conversely, the definition for a “shared micromobility device” is a type of transportation device, including a scooter that is used in a shared micro-mobility device system. 46 46. Ala. Code § 32-1-1.1(64) (2020). × The “shared micromobility device[s]” are subject to the same laws and regulations as a bicycle, and not a motor vehicle. 47 47. See e.g. Seattle Times Editorial Bd., Opinion, Hold Bike-Share Vendors Accountable, Seattle Times (Sep. 5, 2019), https://www.seattletimes.com/opinion/editorials/hold-bike-share-vendors-accountable/; Quemuel Arroyo, Op-ed: Where Do We Put All Those Dockless E-Scooters?, StreetsBlog NYC (Feb. 4, 2020), https://nyc.streetsblog.org/2020/02/04/op-ed-where-do-we-put-all-those-dockless-e-scooters/; Elizabeth Chou, LA Looks to Improve Parking of Dockless Scooters and Bikes. Here’s How, L.A. Daily News (Oct. 22, 2019), https://www.dailynews.com/2019/10/22/la-looks-to-improve-parking-of-dockless-scooters-and-bikes-heres-how/. × As a result, scooters that are privately owned are subject to rules and regulations pertaining to motor vehicles, such as licensing requirements, while scooters that are used within a SMMS are subject to a different set of rules and regulations, including an exemption from the licensing requirement.

  1. Parking and Storage

While there are several deficiencies in the laws governing SMMS (including the absence of them), the research painted a more encouraging picture about the problems of parking and storage. One of the most common complaints about dockless systems is the concern that the bicycles, e-bikes, or e-scooters get left in inconvenient places. 48 48. See Arroyo, supra note 48. × Accordingly, the research team looked at the laws governing the problem.

Part of the concern is one of untidy or unsightly clutter, but the greater concern is about obstructing sidewalks and other thoroughfares of pedestrian traffic, creating a nuisance and a safety-related tripping hazard, as well as limiting access to the sidewalk for people with disabilities. 49 49. See Arroyo, supra note 48. × While this concern often prompts critics to call for banning SMMS, 50 50. Leif Reigstad, The Rise and Fall of Dockless Bike Sharing in Dallas, Texas Monthly, (Aug. 7, 2018), https://www.texasmonthly.com/news/rise-fall-dockless-bike-sharing-dallas/. × most states already have statutes that address the issues of clutter or obstruction, and the problem is simply a matter of finding a way to enforce these laws in the context of shared bikes, e-bikes, and e-scooters. Alabama, the state with the most comprehensive statewide shared micro-mobility legislation, specifically prohibits shared micro-mobility devices from being parked in a manner that impedes normal pedestrian movement. 51 51. Ala. Code § 32-19-2(c) (2020). × However, many other states that currently lack shared micro-mobility legislation already have laws that prohibit all vehicles or specific micro-mobility devices from impeding pedestrian and other traffic. Still others list specific locations where such vehicles can and cannot be parked or delegate such decisions to local authorities. In total, thirty states already have statutes preventing micro-mobility devices from being strewn on or about the sidewalks.

Since laws preventing SMMS devices from cluttering the street are already in place, the problem may come from the difficulties of enforcement. Law enforcement may be hesitant to seize or ticket SMMS devices without clear directives. They are also likely even more hesitant to ticket a user who leaves them in an improper location because they plausibly may not know the requirements. Perhaps comprehensive SMMS laws such as those discussed above can help clarify these laws with regard to shared devices and enable law enforcement to manage the situation more effectively.

This problem may be one of perception more than reality. People are more likely to remember the few times they were walking down the sidewalk and had to step around an obstructing scooter or bicycle than they are to remember the countless times that they walked down the street without any such obstruction. Or they may remember an inflammatory picture they have seen in the press of unwanted and unloved bike-share bikes heaped in huge piles, and perceive a problem in the U.S., even though those pictures were taken in China. 52 52. See generally, Dan Gardner, The Science of Fear: Why We Fear the Things We Shouldn’t-- and Put Ourselves in Greater Danger (2008) (discussing the “availability heuristic”). × Indeed, despite conspicuous complaints about the clutter associated with shared micro-mobility, 53 53. Reigstad, supra note 50. × a study in Spokane Washington found the problem to be at most minor (finding that 96% of e-scooters were parked in a “preferred area” and that 98% of them were parked upright). 54 54. Toole Design, Spokane Shared Mobility Study Final Recommendations 18 (2019), https://static.spokanecity.org/documents/projects/shared-mobility/spokane-shared-mobility-report.pdf. ×

  1. Creating laws that favor bicycles and other micro-mobility to further promote SMMS

Laws that make bicycling, and other micro-mobility use easier will necessarily make SMMS more attractive to potential users; and laws that burden the mobility-user will have the opposite effect. The Idaho stop laws, for example, make cycling vastly more efficient and attractive. 55 55. See Tekle, supra note 21. × State laws that expect cyclists to adhere to the laws that govern motor vehicles, in contrast – failing to account for the fact that bicycles have different capabilities, needs, and safety concerns – impose heavier burdens on cyclists and place them at greater risk of harm. 56 56. David Pimentel, Cycling, Safety, and Victim-Blaming: Toward a Coherent Public Policy for Bicycling in 21st Century America, 85 Tenn. L. Rev. 753 (2018). ×

As noted above, mandatory helmet laws may also be a barrier to SMMS success. While it is tempting to cling to these laws as a fundamental safety measure, such laws have been sharply criticized as counter-productive, from a safety perspective, 57 57. Luke Turner, Australia’s Helmet Law Disaster, 64 IPA Review 28, 28–29 (Apr. 2012), http://www.vehicularcyclist.com/ozdisaster.pdf; Craig Baird, Bike helmets can make roads more dangerous for cyclists, says Bike Regina, Regina Leader-Post (May 2, 2017), https://leaderpost.com/news/local-news/bike-helmets-can-make-roads-more-dangerous-for-cyclists-says-bike-regina; Sue Knaup, Are Helmet Programs Scaring Kids Away from Bicycling?, The Bike Helmet Blog (Nov. 10, 2015), https://www.bikehelmetblog.com/2015/11/are-helmet-programs-scaring-kids-away.html. × and for the implicit message that micro-mobility is very dangerous and therefore something to be avoided. 58 58. Rosenthal, E., To Encourage Biking, Cities Lose the Helmets, N.Y. Times (Sept. 29, 2012), https://www.nytimes.com/2012/09/30/sunday-review/to-encourage-biking-cities-forget-about-helmets.html; Knaup, supra note 57. × That message, as well as the victim-blaming message that responsibility for cyclist safety lies solely with the cyclist, rather than with the drivers who hit them, can only discourage ridership. 59 59. Peter Walker, The Big Bike Helmet Debate: “You Don’t Make it Safe by Forcing Cyclists to Dress for Urban Warfare,” The Guardian (Mar. 21, 2017), https://www.theguardian.com/lifeandstyle/2017/mar/21/bike-helmet-cyclists-safe-urban-warfare-wheels; Pimentel, supra note 56. ×

Laws that permit, or prohibit, riding bicycles on sidewalks or off-road paths and trails may have an impact as well. If people know that they can be cited for riding where they feel safe to ride, they may opt not to ride at all. For example, in a busy urban center, someone may be happy to ride an e-scooter on the sidewalk, but if they know that e-scooters are legal only in the street (as is the case in the states of Washington and California), they may stay off the scooter altogether. 60 60. Cal. Veh. Code § 21235(g) (Deering 2020); Wash. Rev. Code Ann. § 46.61.710 (LexisNexis 2020). ×   Of course, the laws of states, such as Florida and South Dakota, that ban the use of scooters in the streets too, or of the twenty states that are silent on the subject, generate serious uncertainty about whether they can be used legally anywhere.

Conclusions

The wheels of transportation innovation turn much faster than the wheels of legislation. The legal system struggles, playing catch-up with industry changes. That alone does not necessarily constitute a problem. However, the lack of a legal infrastructure may threaten to stifle the innovation and undermine the potential benefits of SMMS in America. This comprehensive study of applicable laws exposes the gaps and inconsistencies in these laws and illustrates some of the impact of these legal deficiencies. The hope is that federal authorities may intervene, promulgating standardized legal rules for shared micro-mobility, as they have for automobiles, which would clarify and harmonize the scattershot approach heretofore taken. If the federal government is unwilling or unable (politically or otherwise) to act, perhaps interested parties – bicycling advocates, safety advocates, industry representatives, and regulators – can combine forces to produce a “uniform law,” one that states may be willing to adopt, much as they have the Uniform Commercial Code. The searchable database of the compiled state laws on this subject created in this study can support such efforts, as well as future research. In the meantime, innovators should be aware of and sensitive to how the variegated legal landscape may impact the results and the future of shared micro-mobility.


David Pimentel is Associate Dean and Professor of Law at the University of Idaho. Before beginning his academic career, he served as staff in the U.S. federal judiciary, including one year as a Supreme Court Fellow, before going abroad to do rule of law development work in post-conflict countries (Bosnia, Romania, and South Sudan). He also spent four years with a United Nations war crimes tribunal in the Netherlands, where he developed an appreciation for cycling as transportation. Intrigued by Idaho’s bicycle laws, he has recently published scholarship on the public policy behind legal regulation of bicycle usage and of shared micro-mobility systems.

Dr. Michael Lowry is an associate professor of Civil Engineering at the University of Idaho with a research focus on transportation planning. He serves on the National Academy of Science Committee for Bicycle Transportation and the Committee for Transportation Investment Decision-Making. He teaches courses on transportation safety, benefit-cost analysis, and geographic information systems. He was awarded the College of Engineering Outstanding Young Faculty award for excellence in teaching and research. Dr. Lowry has been a visiting scholar in Spain, Norway, the Netherlands, and the United Kingdom.

Timothy W. Koglin is a recent graduate of the University of Idaho College of Law and (soon to be) member of the Washington State Bar Association. He spent time at the United States Military Academy and Washington State University before graduating from Liberty University with a B.S. in History. He spent the last two years of law school as the research assistant for David Pimentel working on a wide range of legal topics including parenting, sports, and transportation.

Ronald W. Pimentel has been a marketing professor for 30 years and also had a 12-year career in industry doing marketing and sales. He completed a BA in Art/Design at BYU, an MBA at UC Berkeley, and a Ph.D. in marketing at The University of Arizona. He is currently a Scholarly Associate Professor of marketing and the Faculty Director of the Professional Sales Certificate program at Washington State University Vancouver. Ron has published three book chapters, and many journal articles and conference proceedings. Recent research has included inter-disciplinary work on shared micro-mobility.

This blog post kicks off a month of coverage focused on micromobility – check back tomorrow for a new journal article on micromobility laws nationwide!

A few weeks ago I wrote about how COVID-19 has disrupted the ridesharing industry, with Lyft and Uber struggling to find their place in our changing world. Those same disruptions have sent ripples through the various bikeshare and e-scooter services that make up the micromobility industry, though that segment of the greater mobility ecosystem may be better positioned to continue functioning during the ongoing pandemic.

First, the bad news – earlier in the pandemic, both Lime and Bird, major e-scooter operators, laid off staff, with Lime shedding 13% of its workforce and Bird laying off a full 30%. Part of this was due to the companies suspending some service in the face of the pandemic. In May, a huge number of bikes owned by JUMP, a Lime-owned dockless bikeshare service, were shown being destroyed in videos posted to social media.

Yet at the same time as those JUMP bikes were being destroyed, the U.S. found itself in the middle of a major bicycle shortage. Even now, months into the pandemic, bike producers are struggling to keep up with demand, though industry leaders acknowledge that they were very lucky to dodge the business losses they originally had feared as the pandemic began. Bicycles represent a convenient means of mobility, and as city dwellers sought to avoid public transit, they turned to their bikes to get them where they need to go. Indeed, in New York City, bike riding increased over 50% across the city’s bridges in March as the weather improved. Likewise, also in March, the city’s docked bikeshare, Citi Bike, saw a 67% increase in demand.

That last number is very interesting to me – even at some of the darkest points of New York’s outbreak, people were still flocking to use bikeshare. Indeed, of all the modes of mobility, micromobility seems the most pandemic-proof. To ride carefully all you really need to do is wipe the scooter or bike’s handlebars down, or generously sanitize/wash your hands after your ride. One company, Wheels, has even released rentable e-bikes with self-cleaning handlebars! And, of course, don’t forget your mask, which frankly could improve the ride experience as it shields your face from the wind. I’ll admit that other than my car, a Spin scooter is the only form of transportation I’ve used since the pandemic began – and I would consider myself more paranoid about COVID exposure than the majority of people.

Across the globe cycling and micromobility are a vital lifeline for people to traverse cities, and have proven to be more resilient than other modes of transport in the face of disasters – as seen in the 2017 Mexico City earthquake. I’ve written in the past about how cities are changing in the face of the pandemic, and stronger investment in the infrastructure to support micromobility and cycling needs to be a part of those changes.

So what can the micromobility industry itself do to encourage consumers to use their services, especially those who can’t afford for get their hands on a bike of their own? As often is the case in the mobility space (or at least our coverage of the space…) Michigan offers a potential path forward. At the end of June, the City of Detroit announced a new pilot program to connect essential workers with affordable e-bikes and scooters. In this case, two micromobility providers, Spin and MoGo, along with GM, leased scooters and e-bikes to the employees of hospitals, grocery stores, pharmacies, and manufactures – but only to those employees living within 6 miles of their workplace. Here, micromobility companies are getting their vehicles into the hands of people who need them the most – and giving them a reliable new way to get to work. While far from a full solution to the companies’ woes, it shows that they can reach customers while also providing a public service.

2018 was the year of the electric scooter. They appeared unexpectedly, lined up on sidewalks, often without enough time for city regulators and officials to prepare for their arrival. Their spontaneous presence and practically unregulated use provoked outrage from consumers, city councils, and sidewalk users everywhere.

If 2018 was the year of the electric scooter, 2020 might be the year of the electric moped. Revel, the New York-based electric moped start-up, has placed more than 1,400 mopeds across Washington, D.C., and Brooklyn and Queens, New York, with plans to expand to 10 cities by mid-2020.

Revel’s mopeds operate in much the same manner as the many electric scooters offered by companies like Spin, Lime, and Bird. Riders sign up, pay for, and lock/unlock the vehicles through an app. But where scooters are suitable for last-mile travel, mopeds may fill a medium-trip sized gap in micro-mobility. Mopeds are better for longer trips where being able to sit down and travel at faster speeds is desirable. They are a good compliment, not a rival, to other micro mobility services. The more mobility services available to the public, the more comfortable people will be using them. Overcoming the threshold is important to increasing the use of alternative transportation services.

However, in stark contrast to the drop and run business method initially employed by many electric scooter companies, Revel differentiates itself by emphasizing safety and garnering regulatory approval before deploying. When Washington D.C. announced in August that the city was launching a demonstration pilot for “motor-driven cycles” (“mopeds”), Revel CEO Frank Reig expressed immediate interest in participation:

“We share their goals of providing new, reliable transportation options that work seamlessly in the city’s current regulatory, transportation, and parking systems and help the District meet its aggressive carbon emissions goals.”

Revel’s policy is not just to work with regulators when required; they seek to foster a cooperative environment that sets the company up for long term success and partnership with the cities where the mopeds eventually deploy. Whereas many cities have banned scooters, temporarily or permanently, working upfront with city officials may benefit Revel in the long-term — potentially protecting them from being required to pull their vehicles from city streets.

The cooperative method should provide an example of conduct to other micro-mobility companies seeking to expand their operations; sometimes, it is better to ask permission rather than forgiveness. The goodwill from the city may pay off in the long run if local governments decide to limit how many companies may operate in the city. They also avoid the potential regulatory gap that electric scooter fall into; mopeds are definitely a motor vehicle, CEO Reig has made sure to emphasize:

These mopeds are motor vehicles. This means there is no regulatory gray area: you have to have a license plate. To get that license plate, you have to register each vehicle with the Department of Motor Vehicles in each state and show third-party auto liability insurance. And then because it’s a motor vehicle, it’s clear that it rides in the street, so we’re completely off sidewalks.

Another area of differentiation is safety and employment. Revel’s mopeds are limited to riders aged 21 and older, capped at speeds of 30 miles-per-hour, provide riders with two helmets, and require riders to submit their driver’s license for a safe history driving check. Moreover, unlike electric scooter companies that rely on people working in the so-called “gig-economy” to charge their scooters, Revel relies on full-time employees to swap out batteries on the vehicles. This employment structure is another selling point for cities: full-time jobs and payroll taxes. The company is making an investment that other mobility companies that operate on an independent contractor model do not make. The relationship provides benefits for the cities and Revel, according to CEO Reig:

Our biggest lesson from New York and Washington is that Revel works for cities as they exist today. They work for our riders. They work for our regulators who are seeking ways to enhance their transportation networks, not disrupt them.

After receiving nearly $27 million in Series A funding, including an investment by Toyota AI Ventures, Revel could potentially increase its vehicle fleet 10-fold, aiding them in meeting their ambitious expansion plans by the middle of next year.

Anyone currently living in a large city or an American college town has had some experiences with scooters – would that be the mere annoyance of having them zip around on sidewalks. Or, as a friend of mine did, attempt to use one without checking first where the throttle is…

Montréal, the economic and cultural capital of Québec province in Canada, has recently given temporary “test” licenses to micromobility scooters and bikes operators Bird, Lime and Jump, the latter two being owned by Google and Uber, respectively. 

Operations started late spring, among some skepticism from Montrealers. Not only in face of the strict regulations imposed by the city’s bylaw, but also the steep price of the services. As one article from the leading French language daily La Presse compares, a ride that takes slightly more than 20 minutes by foot would cost more than 4 Canadian dollars (about $3) with either Lime (scooters) or Jump (bikes), for a total ride time of 12 minutes. The subway and the existing dock-based bike-share service (BIXI) are cheaper, if not both cheaper and quicker. 

While Montréal’s young and active population segment can be understood as the perfect customer base for micromobility, its local government, like many others across the world who face a similar scooter invasion, really mean it with tough regulation. Closer to home, Ann Arbor banned Bird, Lyft and Lime earlier this spring for failure to cooperate; Nashville mayor attempted a blanket ban; Boulder is considering lifting its ban; several Californian cities are enforcing a strict geofencing policy; further away from the US, Amsterdam is also going to put cameras in place in order to better enforce its bikes-first regulation after having already handed out 3500 (!) individual fines over the course of a few months. As NPR reports, the trend is toward further tightening of scooter regulations across the board.

So is Montréal’s story any different? Not really. It faces the same chaotic parking situation as everywhere else, with misplaced scooters, found outside of their geofence or simply where they should not be. In its bylaw providing for the current test licenses, the city council came up with a new acronym: the unpronounceable VNILSSA, or DSUV in English. The English version stands for “dockless self-serve unimmatriculated vehicles”. The bylaw sets a high standard for operators: they are responsible for the proper parking of their scooters at all times. Not only can scooters only be parked in designated (and physically marked) parking areas, but the operator has two hours to deal with a misplaced scooter after receiving a complaint from the municipal government, with up to ten hours when such a complaint is made by a customer outside of business hours. In addition, customers must be 18 to ride and must wear a helmet. 

Tough regulations are nice, but are they even enforced? The wear-a-helmet part of the bylaw is the police’s task to enforce and there has not been much going on that front so far. As for the other parts, the city had been playing it cool, so far, giving a chance to the operators to adjust themselves. But that did not suffice: the mayor’s team recently announced the start of fining season, targeting both customers who misplace their scooter or bike if caught red-handed and the operators in other situations. The mayor’s thinly veiled expression of dissatisfaction earlier prompted Lime to send an email to all its customers, asking them in turn to email the mayor’s office with a pre-formatted letter praising the micromobility service. The test run was meant to last until mid-November, but it looks like may end early… The mobility director of the mayor’s team pledged that most of the data regarding complaints and their handling – data which operators must keep – would be published on the city’s open data portal at the end of the test run. 

If Chris Schafer, an executive at Lime Canada, believes that customers still need to be “educated” to innovative micro-mobility, Montréal’s story may prove once more that micromobility operators also need to be educated, when it comes to respecting the rules and consumers’ taste for responsible corporate behavior.

One of the most persistent issues in public transportation is the so-called “last mile” problem. The essence of the problem is that, if the distance between the nearest transit stop and a rider’s home or office is too far to comfortably walk, potential riders will be more likely to drive than use public transit. The rise of smartphone enabled mobility options like ridesharing, bike-share, and e-scooters have been pitched as potential solutions to this problem. However, some cities have found that these technologies may create as many problems as they solve.

This post will focus in particular on the rise of e-scooters. Over roughly the last two years, e-scooters from companies like Bird and Lime have proliferated across American cities. Often appearing seemingly out of nowhere as companies frequently launch the product by dropping off a batch of scooters overnight without warning, they have been a source of angst for many city officials.

As the scooters spread, ridership has proliferated. Thanks to ease of use, the proliferation of smartphones, and increasing comfort with new forms of mobility, ridership has accelerated at a faster pace than ride-hailing apps, bikeshare programs, or other mobility platforms that have developed in recent years.

With this growth though has come challenges. In June, Nashville chose to ban e-scooters in the aftermath of the city’s first rider death. Last year, in response to concerns about safety and obstruction of sidewalks, Cleveland banned e-scooters. In the initial rollout period Cleveland was far from alone, as cities from St. Louis to San Francisco to Santa Monica also moved to ban or significantly reduce the number of scooters allowed.

Some of these bans, or at least use restrictions, may have been justified. Because they have no defined ports at which to be put away, scooters are often left blockading the sidewalk. At least 8 scooter riders have died in crashes, and users often remain confused about what laws apply to them and where they can ride. Hospitals across the country have seen a spike in emergency room visits related to scooter crashes, and the Centers for Disease Control has found that head trauma is the most common injury resulting from a scooter crash.

Slowly though, cities have begun experimenting with ways to let scooters in without letting them run wild. Last month Cleveland allowed scooters back in, with new limitations on where they are allowed to go and who is allowed to ride. Norfolk, VA recently contracted with e-scooter company Lime to allow them to have a local monopoly over scooter service in the city. The move may allow Norfolk greater control over how Lime operates within its borders, which could ultimately increase safety.

Given the obvious potential for e-scooters to increase mobility to parts of a city that aren’t within easy walking distance of transit stations, cities should continue working to find ways to allow them in while mitigating safety concerns. The results in cities like Norfolk and Cleveland that are working to introduce regulation to this new industry will be important to watch in the coming months.

In my previous posts, I have written a lot about city design and integrating emerging forms of transit, primarily automated vehicles, into the transportation landscape of a city. I am spending this summer in Washington, DC, and am getting an up-close look at this city’s transit options. I left my car behind for the summer, so for the first time in years, I am entirely reliant on public transportation, ridesharing apps, and my own feet to navigate the city. In the process, I have learned a few things that I plan to explore in more depth over the course of the summer. For now, here are the highlights:

1. Scooters do provide important transit for at least some people:

My house is about 0.6 miles from the bus line I take to work. So far, I have walked to that stop every morning. Along the way though, I see people riding by on scooters between the metro or bus station and their homes. It may yet be the case that scooters are a passing fad, and for now they appear – at least anecdotally – to have been adopted primarily by younger people. And to be sure, regulating them has been controversial in cities across the nation, which I plan to address in a coming post. For now though, they do show promise as a “last-mile” transit option for people who prefer not to drive.

2. A wide range of transit options improves access and reliability:

I ride the bus to and from work every day. When I want to explore the city on weekends, I take the metro downtown. I was running late to meet a friend the other day, and got an Uber. Others use scooters or the city’s bike-share program to get where they need to go. All of these options will work better or worse for different people, and for different purposes. All of them operating together can create a more functional, accessible transit system that serves the entire city.

3. Walkable neighborhoods ease the burden on a city’s transit system:

I live in a neighborhood with a grocery store, a Target, and a handful of bars and restaurants within a few blocks radius. As a consequence, I can walk just about everywhere I have to go except my office. Later this summer, I plan to explore ways in which cities can encourage development of walkable neighborhoods, thus easing the burden on overtaxed public transit systems and reducing the use of personal cars in the long run.

4. Affordable housing is directly linked to transit equity:

Perhaps this goes without saying, but a good, comprehensive transit network within a city does little good for the people who cannot afford to live in that city. This week, I’ve spoken with a couple people in my office who live an hour outside the city because it’s more affordable than living here. They drive to the farthest out metro stations, park there then ride into the city. To be sure, this still reduces congestion within the city. But good, reliable public transit is primarily important for the quality of life, cost savings, and environmental benefits that come with reduced use of personal automobiles and shorter commutes. People who have to commute a long way to even get to the public transit system in the city where they work are largely left out of those benefits.

In the U.S., Thanksgiving represents the busiest travel period of the year, with AAA predicting that this year 54 million people will travel 50 miles or more before sitting down for turkey and stuffing. So how will CAVs and other mobility innovations change how we travel, not just at Thanksgiving, but yearlong? Lets take a look at a few recent stories that could point the way:

Waymo’s Self-Driving Service Hits the Bigtime

Back in August, Dan mentioned some issues Waymo’s automated vans had run into in Phoenix. Those issues don’t seem to have slowed the Alphabet (Google) owned company, as they have announced (as noted by Kevin) the launch of commercial service in December. The company is planning a slow roll out, and some cars will still have backup drivers, but by the Christmas travel season, some people in Arizona will be able to hail a driverless taxi to shuttle them to the airport.

Multimodality – Instead of a Taxi to the Airport, How About an E-Scooter and a Bus?

Uber has recently started to personalize suggestions on how to complete a trip. Depending on the distance to be traveled, the app will suggest you use a JUMP bike instead. Travelers in select cities can use Citymapper to plan trips across rideshares and public transit. In Chicago, for example, the app coordinates city buses, Divy bike shares, the ‘L’ system, and commuter rail. In London, Citymapper users can even hail a rideshare via the app’s own fleet. Meanwhile, bike and scooter startup Lime is expanding their services to include cars on their platform, and plans to deploy up to 500 cars in Seattle by the end of the year.

These companies are far from the only parties trying to synchronize how we use various mobility services. While the promise of a single app for all our mobility needs is yet to be fulfilled, the momentum is clearly there. Such an app would further enhance the congestion (and environmental) benefits that are projected to come with wider adoption of CAVs. While CAVs can better coordinate the cars that are on the road, multimodal programs can take even more cars off the road by pointing users to more efficient public transit or bikes/scooters.

Leaving Car Ownership Behind (Eventually…)

While some drivers may use self-driving cars and multimodality services to supplement their personal vehicles, there is an increasing push to replace vehicle ownership altogether. Lyft has launched a “ditch your car” challenge in a number of cities, encouraging users to try to live without their vehicles for a month. They’ve also launched a subscription service, offering 30 rides (up to $15 each) a month for $299.

Not interested in completely ditching your car? GM’s Maven platform lets you rent out your own vehicle, and is expanding in 2019 to include non-GM vehicles. Or you can opt for a more old-fashioned carpool, facilitated by Waze, which is slowly expanding a service to connect potential carpool members. So by next Thanksgiving, you may be able to snag a Waze carpool while leaving your personal vehicle behind to earn a little extra cash on Maven.

The point of this round up is not to provide a commercial for these platforms, but to highlight the ongoing disruption of the way people move through the world, a disruption that will only continue as CAVs reach greater deployment.

City design has long been shaped by modes of transportation. The transition is easy to spot as you move westward across America. Relatively compact eastern cities initially grew up in the 18th and 19th centuries, when people traveled by foot or by horse. Scattered across the plains, and particularly throughout the vast expanses of Texas and the Southwest, are cities filled with wide thoroughfares and sprawling suburbs, designed to match the rise of car culture. A large-scale shift to autonomous vehicle transportation will once again mold our cities in new ways. I wrote recently about this coming shift, focusing in particular on the reuse of space currently dominated by parking. This post will build on that theme by exploring the ways in which big data generated by new transportation technologies will guide city planners and business strategists in creating new urban environments.

Many cities already take advantage of more traditional forms of transportation data to improve urban planning. For example, analysis of population density and traffic patterns facilitated Moscow’s 50% increase in public transit capacity, which enabled the city to reduce driving lanes in favor of more space for pedestrians and cyclists. Looking to the future, New York University’s Center for Urban Science and Progress seeks to help cities harness the power of big data to “become more productive and livable.” Today, more data exists regarding our transportation habits than ever before. Ride-hailing services such as Uber and Lyft, along with the popularity of “check-in” apps such as Foursquare, have exponentially increased the amount of data collected as we go through our daily routines. The advent of CAVs, along with smaller scale technologies such as bike-share and scooter-share programs, will only accelerate this trend.

Currently, most of this data is collected and held by private companies. This valuable information is already being aggregated and used by companies such as Sasaki, a design firm that uses data from Yelp, Google, and others to help businesses and developers understand how their planned projects can best fit in with a community’s existing living patterns. The information is able to help businesses understand, on a block-by-block basis, where their target market lives, shops, and travels. As companies such as Uber and Waymo roll out fleets of autonomous vehicles in the coming years that collect data on more and more people, such information will increasingly drive business planning.

Just as this wealth of data is impacting business decisions, making it available to the public sector would mark a significant upgrade in the capabilities of urban planners. To be sure, granting the government easy access to such fine-grained information about our daily lives comes with its own set of challenges, which my colleague Ian Williams has explored in a previous post. From the perspective of planning utility however, the benefits are clear. By better understanding exactly what times and locations present the worst traffic challenges, cities can target infrastructure improvements, tollways, or carpool benefits to alleviate the problem. A more detailed understanding of which routes people take to and from home, work, shopping, and entertainment districts can allow for more efficient zoning and the development of more walkable neighborhoods. This type of improvement has the potential to improve the livability of city centers so as to guard against the danger that CAVs will facilitate a new round of exurban flight.

As with previous shifts in transportation, the widespread move to CAVs expected in the coming years will be a key driver of the future shape of our cities. Urban planners and business strategists will play a featured role in determining whether this technology ushers in a new round of sprawl, or facilitates the growth and attractiveness of metropolitan centers. The intelligent and conscientious use of data generated by CAVs and other emerging technologies can help fuel smart development to ensure that our downtown spaces, and the communities they support, continue to thrive.