Environment

Several articles have been written over the past two years regarding shared micromobility electric scooters’ environmental impact. Some of the more phenomenal headlines were hyper-critical of electric scooters:

            Electric Scooters Aren’t Quite As Climate-Friendly As We Thought;

            Sorry, Scooters Aren’t So Climate-Friendly After All;

            Study: Electric Scooters Increase Carbon Emissions In Most Cases.

The report cited to support these assertions is one out of North Carolina State University with a similarly eye-catching title: “Are E-Scooters Polluters? The Environmental Impacts Of Shared Dockless Electric Scooters.” The study found that the greenhouse gas emissions associated with e-scooters were derived from four primary sources. The two largest impact categories — materials & manufacturing and collection & distribution emissions — accounted for over 90 percent of emissions. The two remaining categories were the transportation to the U.S. (most scooters are manufactured in China) and the actual emissions from scooter use and maintenance.

To me, that life cycle assessment is encouraging because scooter companies can reduce those two largest categories through practices on through production and operational changes. The truth of the environmental impact of electric scooters ultimately rests on the answer to a few simple questions:

  1. How are electric scooters manufactured?
  2. How long is the use-life of an electric scooter?
  3. What types of trips are electric scooters replacing?
  4. How are electric scooters collected, charged, and distributed?

These questions are interrelated and address overlapping issues. The answers are important for the future success of shared micromobility scooters as part of a mixed-transportation system. High on the list of goals that cities have set that they hope micromobility can help them reach are reduced traffic congestion and reduced emissions.

How are electric scooters manufactured?

This part of the life cycle of scooters may be difficult for cities to internalize and pressure scooter companies to change. Since the scooters are manufactured in China, and the raw materials are sourced outside the U.S., the immediate emission effects are not internalized in the United States. The direct effects are brought to bear in China and at the communities containing the mines for component materials. The component materials of a typical electric scooter include an aluminum frame (6.0kg), steel parts (1.4 kg), a lithium-ion battery (1.2 kg), an electric motor (1.2 kg), and tires with tubing (0.83 kg). Fifty percent of the emissions associated with electric scooters come from procuring the materials and manufacturing the actual scooter.

One way to reduce the emissions per passenger mile driven is to use the parts of decommissioned scooters to refurbish and extend other electric scooters’ lives. This will extend the parts’ life and reduce the need to procure and manufacture brand new scooters with new raw materials. Most of the scooter parts can be recycled if they cannot be reused in other scooters.  Uber has committed to recycling 90 percent of used spare parts from their “Jump” line of micromobility bikes and scooters. In the future, major micromobility providers should commit to using more recycled raw materials and components and to recycling the parts of e-scooters after they have outlived their working days. We cannot let what happened to bicycles in China happen to electric scooters in the United States.

How long is the life of an electric scooter?

Closely tied to the question of what goes into an electric scooter is: how long do scooters stay on the road? The longer a scooter can remain operational, the lower the average emissions per passenger miles traveled due to the sizeable portion of emissions being created up-front from materials and manufacturing. The less time a scooter is operating on the street, the higher the emissions per passenger mile traveled. When companies first distributed scooters around the U.S., the average life cycle was between one and three months. This short life was due in part to scooters being destroyed, thrown in rivers, and generally abused as they descended on cities, in addition to the expected wear and tear from everyday use. Over time, the scooters being manufactured and distributed have been made to be more durable and long-lasting. However, this can create a tradeoff with manufacturing emissions: to make more durable scooters that enjoy a longer street-life, more durable materials, and more energy must go into manufacturing, creating more emissions. If vehicles can last for two years before being decommissioned, the average per passenger-mile traveled is decreased by roughly 30 percent, according to the NCSU study. The tradeoff between increasing manufacturing inputs to extend the life of scooters is beneficial. Micromobility providers should continue spending resources developing more robust scooters that will need less maintenance and can remain in circulation longer to drive down average emissions continually. This solution should be supplemented by reusing parts, as discussed above. Using parts from older scooters to extend scooters’ lives on the street should be a priority for cities and micromobility companies. 

What trips are electric scooters replacing?

The benefits of electric scooters on transportation sector emissions depend mostly on what other transportation methods are being displaced. Suppose scooter trips only displace trips that otherwise would have been walking. In that case, scooters will never be an emission reducing solution. If e-scooters are only replacing automobile trips, scooters would always reduce net transportation emissions even at the current life cycle emissions assessment. Replacing ride-sharing and automobile trips decreases emissions (although this may not remain true as ride-hailing providers shift to using only zero-emission vehicles). Replacing what would otherwise be walking, bicycling, or public transportation trips results in more emissions from the transportation sector.

Several cities have studied this question during their scooter pilot programs. Chicago reported 43 percent of scooter trips replaced a trip that would have used ride-sharing service or personal vehicle. Thirty percent would have been walking trips, and 15 percent would have used public transportation. Portland found that 34 percent of local riders and 48 percent of visitors took an e-scooter instead of using a ride-hailing service or driving a personal vehicle. However, the city also reported that 42 percent would have walked or biked. Suppose scooters continue to and increasingly replace personal vehicle and ride-sharing trips. In that case, they will successfully help cities meet their goals of reducing traffic congestion and transportation emissions. However, in Ann Arbor, data shared by scooter companies has shown that scooters are not serving to replace vehicle trips or as the touted first-last mile solution. They are overwhelmingly replacing trips that otherwise would all be on foot: trips between on-campus academic buildings. This widespread use for scooters in college towns is an occurrence cities will need to address to meet their goals.

How are electric scooters collected, charged, and distributed?

Scooter companies approach collection, charging, and distribution in similar ways with minor variations. They employ people (either as employees or independent contractors) to drive around and collect scooters, take them somewhere (a central charging location or their home) to be charged overnight, and then use those people to drive around in the morning to redistribute the scooters. Cities often have requirements for the starting balance of scooters across the city to provide equitable access to communities underserved by public transportation. The additional miles driven by personal vehicles to find scooters, take them to be charged, and redistribute them in the morning accounted for 43 percent of scooters’ emissions impact.

There are several ways to address this enormous source of emissions. One method would require micromobility companies to make a similar move to Lyft: require their “chargers” (as Spin calls them) to drive an electric vehicle (or at least highly fuel-efficient cars) to reduce emissions from driving around. However, this would limit the number of people eligible to work in these roles, but that will change as electric vehicle models become more ubiquitous in the market this decade. Another solution is to minimize the distance between where scooters are picked up and dropped off. This may require greater segmentation or creating grids for collection and drop off.

The solution I like best requires investment and partnership between cities and scooter companies: installing public charging and storage corrals, and develop a reward charging program. At the entrances to metro stations, near bike-share drop-off areas, and other areas where morning demand is highest, scooter companies can work with cities to install corrals where scooters can be deposited and plugged into installed chargers. By sharing demand and usage data, scooter companies and cities can determine the best morning distribution locations and work in partnership to build central hubs for charging and collection.

Instead of hiring or contracting with vehicle drivers to pick up dozens of scooters, scooter companies should create rewards programs that incentivize users to drop off low-battery scooters at this location and plug them in to be charged. There will still be a need for drivers for scooters with bone-dry batteries. Still, users can relocate scooters with 10-20 percent juice to a charging corral at the end of a day in exchange for a free ride credit for later use. With the invigoration of reward and competition type apps, micromobility companies could incorporate features that “gamify” charging on foot instead of driving around in a vehicle.

Where we go from here

The conversation around the emissions associated with shared micromobility scooters needs to be reshaped. The industry has already come a long way since the first days of descending on cities like locusts. Cities are integrating scooters into their transit options; People have accepted them and approve of them; Scooters have great potential to reshape transportation. By adopting some of the suggestions I’ve proposed above, electric scooter companies can put to rest the idea that they aren’t a part of the solution to reduce the transportation sector’s emissions.

The first week and a half of the Biden administration has seen a flurry of activity: thirty executive orders and actions were taken in the first three days alone, with new announcements every day this week as well. Three of the earliest orders touched transportation and energy issues: an order promoting COVID-19 safety in domestic and international travel, an order to rejoin the Paris Climate Agreement, and an order that will block a permit for the Keystone XL pipeline and direct agencies to review more than 100 Trump executive actions on the environment.

Biden has nominated for Transportation Secretary Pete Buttigieg, who emphasized infrastructure in his campaign for the Democratic candidacy and touted a $21 million investment in “Smart Streets” to revitalize downtown South Bend as the city’s mayor. Biden has nominated as Secretary of Energy Jennifer Granholm, who, since serving as Michigan’s governor, has maintained a focus on renewable energy development, and, particularly, the electrification of American cars.

Among Biden’s most expensive proposals is his sweeping $1.7 trillion plan to tackle climate change. Biden’s executive orders on climate and the environment will freeze new oil and gas leases on federal lands; conserve at least 30% of federal lands and oceans by 2030; double wind energy production by 2030; and establish an interagency climate task force; all with a goal of achieving net-zero carbon emissions by 2050.

With climate, infrastructure, and clean energy jobs as guiding focuses, here is a preliminary view of the transportation policies that we can expect from the Biden Administration:

Electric Vehicles and Fuel Efficiency

Biden’s “Plan for a Clean Energy Revolution” includes a $400 billion investment in clean energy and innovation. A significant part of this plan is working toward the widespread use of electric vehicles.

Automakers expect a push for a new agreement to raise average fuel economy standards across fleets, which will require them to sell more electric vehicles. Under Trump’s standards, they would have had to show 1.5% fleetwide fuel economy increases from 2022-2025, which had been lowered from the 4.7% standard of the Obama Administration. There are currently around twenty fully electric vehicles for sale in the US, with many more expected to pop up in the next few years, including electric pickup truck models from GM, Ford, and Fiat Chrysler. Ford has pledged $11 billion to introduce a variety of new EVs, while GM has committed $27 billion to electric powertrains, vehicles, and autonomous systems through 2025.

On the manufacturing side, Biden hopes to make the U.S. a leader in electric vehicle production, with a goal of creating 1 million new jobs in the auto sector. On the consumer side, he has floated plans to offer rebates for consumers to replace conventional cars with electric vehicles. He has pledged to add 550,000 charging stations across the US.

Biden also plans to electrify the government fleet. In 2019 there were 645,000 civilian, military, and post office vehicles in the federal government’s fleet. Fulfilling this goal will create jobs in the industry, accomplish net-zero transportation-related carbon emissions for the federal government, and provide long-needed updates for postal workers. In anticipation of this plan, part of GM’s electric and autonomous vehicle investment will be in its defense unit, which relaunched in 2017.

Infrastructure

For decades, infrastructure development and maintenance has been synonymous with road funding. Attempting to break away from this pattern, Biden’s $2 trillion “Build Back Better” plan includes development goals for transit and power; upgrading and weatherizing buildings; constructing sustainable homes; innovating clean energy technology; streamlining agriculture; and expanding internet access.

Nicknamed “Amtrak Joe,” Biden’s infrastructure plan includes “sparking the second great railroad revolution.” He plans to work with Amtrak and private freight companies to electrify their fleets. Biden is also aiming to invest in quality public transportation in the roughly 315 American municipalities with populations of more than 100,000 by 2030.

Biden’s plan to expand broadband internet or wireless broadband via 5G also targets transportation and climate change by supporting a transition to remote work.  

An advisor to Biden recently announced that the Administration believes an infrastructure bill of up to $2 trillion is possible within Biden’s first 100 days. Absent legislation, the administration can still shape approximately $1 billion in Department of Transportation grants to promote this agenda; the Trump administration focused on road projects encouraging car travel with these grants.

Autonomous Vehicles

The Trump administration took a purposefully hands-off approach to regulating autonomous vehicles (AV). The National Highway Transportation Administration (NHTSA) promulgated voluntary guidance, which contained twelve safety elements for testing. Of the 66 companies with permits to test these vehicles in California, only 32 submitted these self-assessment reports, and not all of those were rigorous.

While there is not an explicit Biden plan on autonomous vehicles, Buttigieg’s infrastructure plan during his run included reassembling the Advisory Committee on Automation in Transportation, which Trump secretary Elaine Chao had disbanded, and proposing that NHTSA take on a strong federal role for the regulation and oversight of AV safety. A request for comments on AV safety in the waning days of the Trump Administration could be a jumping-off point for these plans.

Granholm has expressed concerns about the labor implications of AV, which could also shape the Biden Administration’s AV policies.

Micromobility

When campaigning, Biden promised to help cities “invest in infrastructure for pedestrians, cyclists, and riders of e-scooters and other micromobility vehicles.” The Biden Administration may therefore account for micromobility as part of is transportation and infrastructure policies.

One development in Congress in this area is the bipartisan Bicycle Commuter Act of 2021, which was recently introduced into the House. The Act would bring back and strengthen an expired pre-tax benefit program for bike commuters, increasing the benefit and ensuring that cyclists could be eligible for other transit coverage. This could be a starting point on micromobility.

Environmental Justice

The early actions of the Biden Administration demonstrate a focus on environmental justice unparalleled by any previous president. On Wednesday it was reported that Biden will sign an executive order establishing an interagency council on environmental justice, an office of health and climate equity in the Department of Health and Human Services, and an office of environmental justice at the Department of Justice. These orders will double down on the promises of a Clinton executive order to ensure that environmental justice considerations are a part of all federal projects. Biden’s clean energy plan includes a goal to support the health and wellbeing of those who have been impacted by fossil fuels, including advocating for new jobs in renewable energy in oil and gas towns. Biden’s infrastructure plan includes a goal of “disadvantaged communities” receiving 40% of the benefits of government spending on energy efficiency.

Accordingly, any of the Biden Administration’s transportation policies may need to account for disproportionate impacts on marginalized communities in the U.S.

Overall, achieving low carbon emissions, investing in sustainable infrastructure, and promoting environmental justice will be the central concerns of the Biden administration that will drive its transportation policy. While there is little in the way of specific policy on AV and micromobility, we are likely to see increased research and regulation in these and other emerging transportation areas.

As the COVID-19 pandemic continues and our memories of the “before time” feel ever more distant, some have begun to wonder how this crisis and its aftermath could change how and where people live. Will people abandon expensive and dense major cities for smaller cities, suburbs or even small towns? On the one hand, I’ll admit that living in a small city like Ann Arbor has made weathering the lock down rather easy, which could lead credence to these ideas. Personally, I’ve had no issues finding supplies, or taking a walk without running into too many other people (though my apartment building’s shared laundry rooms are now a fraught location). Of course, Ann Arbor, a wealthy, educated college town with excellent access to medical care has a lot of resources other cities do not, so it may not be the best example.

Alternatively, there are those who argue our cities won’t actually change that much post-COVID-19, and there are even ways that the outbreak could make cities better (with the proper investment). Cities have survived disease outbreaks for millennia, and given that so much of our economy, culture, and infrastructure is built around cities it would be hard to seismically shift to some other model of living. Yet the economic upheaval that the pandemic has ushered in will no doubt influence where and how people live, and could last a good deal longer than the disease itself.

So what changes are well already seeing in cities, and what could that indicate about where we’re heading? In a number of cities, including New York, Seattle, and Oakland, are closing streets to open up more space for pedestrians and cyclists. Streets could also be closed to provide more outdoor space for restaurants, to help them reopen while preserving some measure of social distancing. New Zealand has gone as far as to make such street alterations national policy. Cities and towns in that nation are able to apply for funding to immediately expand sidewalks and modify streets, with the national government covering 90% of the cost. Some suggest these closures and modifications should be permanent – that we should take this opportunity to create more walkable and bikeable cities now, when we have the chance. In many ways these modified streets are similar to proposals for automated vehicle (“AV”) dominated cities. Supporters believe that wide adoption and deployment of AVs would mean more streets could have one lane of traffic in each direction, with the extra space turned over to alternative uses. The current demands of social distancing dovetail with those ideas – could cities use the current crisis to prepare themselves for an autonomous future? Given the difficulty of building new infrastructure, it may not be a bad idea to get ahead of the curve.

As noted by Phillip in a post earlier in the crisis, another effect of the global lockdown has been improved environmental conditions in cities around the globe. In India, for example, where cities have significant pollution problems, massive reductions in travel have led to clear skies. For the first time, we are seeing clear examples of what cleaner energy production could bring (pun intended). Such improvements could lead residents to demand continued reductions in emissions even after this crisis passes. These and other changes made to cities in the short term to cope with lockdowns and social distancing could dictate the future of urban design, but only if governments and citizens are willing to adopt them and protect them from being undone once the crisis passes.

P.S. Those of you who are interested in buying a bike to help navigate the new socially-distanced world may run into an issue – just like masks, cleaning supplies, and toilet paper, bikes are now becoming a scarce resource in some places.

It feels like much longer than two months ago that I first wrote about the coronavirus, Covid-19. At the time of my first blog post on the subject, the world had just witnessed China quarantine more than 50 million people in four weeks. The United States is now under conditions that significantly exceed that number. As of March 26th, more than 20 U.S. states have imposed either statewide orders, or partial orders, for residents to stay at home and shelter in place. Currently, more than 196 million citizens are being urged to stay at home. Social Distancing, Zoom, and Flatten the Curve have become household names and phrases overnight. As I write this, millions of citizens are entering their second or third week of working from home.

As the United States reckons with this outbreak’s severity and we learn to live at a distance, it is crucial to reflect on the unintended secondary effects that have become apparent from en masse “work from home” (“WFH”). Perhaps we can learn something. Perhaps it is just refreshing to note them. Perhaps it could provide inspiration for solutions to many problems we are already facing or will one day face.

Traffic Reductions

Traffic in various cities across the world has decreased dramatically. With millions of people working from home for the foreseeable future, there are fewer cars on the road during traditional rush hour peaks. Traffic in Chicago is moving as much as 60% faster; traffic in Los Angeles is moving 35% more quickly than usual.  8am LA rush hour traffic was flowing around 60 miles per hour, while it typically dips down to 30 mph. Roughly the same increase in speed was measured during the evening commute hour.

Pollution Reduction

A decrease in rush hour traffic was an easily predicted effect of mass-quarantining. One unintended side effect is the sharp decrease in pollution over major cities. There has been a severe downturn in Nitrogen Dioxide (“NO2“) — a significant pollutant released from the burning of fossil fuels — over Los Angeles, Seattle, and New York. The same significant drop in NO2 has been seen over China around Wuhan, Shanghai, and Beijing.

This decrease in pollution and an increase in traffic speeds reflect the anticipated benefits of autonomous vehicles. One of the benefits of AVs is the decrease in emissions that come from daily commutes. Most autonomous vehicle manufacturers and testers use electric vehicles because the electrical power the advanced computer systems draw exceeds the capacity of most car batteries. An increase in electric vehicles on the roads will decrease fossil fuels being burned while driving, which would likely lead to a reduction in pollutants (like NO2) over concentrated areas over roadways.

Another benefit of AVs is the decrease in traffic time. Vehicles the communicate with other vehicles (“V2V”) or that communicate with infrastructure (“V2I”) will, over time, allow for fewer slowdowns and higher average driving speeds. Because vehicles can communicate when they are slowing down, speeding up, turning, exiting, etc. the flow of highway traffic will become smoother as fewer interruptions cause human drivers to hit the breaks or come to a standstill. AVs that platoon in synchronization can also increase traffic speeds.

One of the much-touted benefits of autonomous vehicles is the increased productivity that a driver can experience by freeing up their attention and hands from needing to drive and monitor their vehicle. Although not to the same scale, faster traffic speeds from increased WFH translates into less time wasted on a commute and more time with family and at work. The same is true of WFH; my daily commute has changed from a 15-minute walk to the law school to a 15-second walk from the kitchen up to my desk. 

One metric I am interested in seeing after the Covid-19 social distancing and en masse WFH is worker productivity while working from home. If workers are similarly (or more) productive when working from home, we could see an uptick in companies allowing employees to WFH weekly, or even on an unlimited basis (subject to approval of some sort). Similarly, if some of the benefits that AVs seek to bring — decreased traffic, reduced pollution, increased productivity — can be achieved through en masse WFH, should AV proponents, and others interested in these benefits, be advocating for more WFH in other contexts? Companies could even use WFH to advertise their “green” efforts, by touting the number of driven miles and pollutants they eliminate annually by requiring employees to WFH periodically.

If we anticipate future events like Covid-19, where social distancing becomes crucial, keeping WFH skills sharp may become a necessity. Allowing or requiring workers to stay home one or more days per week could be a method to keep those skills sharp: being productive at home, efficient communication online, and keeping in contact with employees and supervisors. As this crisis continues to unfold, it is essential to remember that this round of social distancing will not last forever. As a country, we will emerge from this crisis changed. How we change is interesting to project, but it is similarly essential to aid in preventing future problems and adapting future solutions.

Last week, the United States declined to sign the “Stockholm Declaration,” an international agreement to set targets for reducing road fatalities. The reason given for not signing the declaration was the U.S.’s objection to items within the document that referenced climate change, equity, gender equality, and other issues. For context, here is the paragraph they are referencing:

[Signatories resolve to] “[a]ddress the connections between road safety, mental and physical health, development, education, equity, gender equality, sustainable cities, environment and climate change, as well as the social determinants of safety and the interdependence between the different [Sustainable Development Goals (“SDGs”)], recalling that the SDGs and targets are integrated and indivisible;”

This is an abdication of responsibility on the part of the American government, and ignores the real social, economic, and climate issues that are deeply tied to transportation. This piece is the first in a series, in which I will touch on how transportation, especially the emerging mobility technologies we usually cover, are entwined with issues that the current Administration sees as beyond the scope of road safety. This is not meant to be an exhaustive list, but rather a few examples offered as proof of the complexity of the issues. For today we’ll consider the environmental issues that are tied to road safety.

Road Safety and the Environment

Much has been made of how CAVs and other new mobility technologies can reduce greenhouse emissions via electrification of transportation and gained efficiencies through coordination between vehicles and infrastructure. The pursuit of safer roads via CAV deployment is also the pursuit of “greener” roads. This is especially important in the face of a recent study that found the use of rideshares like Lyft and Uber are increasing emissions – by an estimated 69%. The study found that rideshare usage shifted trips that would have been undertaken by mass transit, biking, or walking. Any discussion of the future of road safety, especially in cities, will have to include discussions of ridesharing, and how to better integrate biking, walking, and things like micro-mobility services into our streets, an integration that has important environmental implications.

The deployment of electric vehicles, something that appears to be a goal of major auto manufacturers, is another area in which road safety and the environment meet. To start with, these vehicles reduce overall vehicle emissions, which themselves are a health hazard. While not traditionally part of the road safety discussion, recent studies have shown that outdoor air pollution reduces the average life expectancy world-wide by almost 3 years. Including emissions in the safety conversation is especially important as vehicles are now the largest carbon producers.

Electric vehicles have other positive safety features – their large batteries, for example, make them less likely to roll over in an accident. On the other hand, electric vehicles traveling at low speeds can be harder for pedestrians and others to hear. In response, NHTSA has now mandated that EVs be equipped to generate artificial sound to warn those around them.

These are just a few ways in which environmental issues cross over into road safety, as recognized by the signatories to the Stockholm Declaration, and it is imperative the U.S. government take them into consideration rather than dismissing them outright.

The delivery industry is evolving in order to keep up with the rise of home delivery. Arrival, a startup company in the process of building electric delivery vans, plans to add new vehicles to the roads in the next few years. The company plans to offer vehicles with different battery capacities, but the current model maxes out at 200 miles of range. Arrival’s vehicles are expected to carry 500 cubic feet of packages and up to two tons. In order to be competitive with the direction towards automation, Arrival is designing its vehicles to accommodate autonomous systems which will allow for a smooth transition once autonomous driving is more widely used. In the meantime, the vehicle’s Advanced Driver-Assistance Systems (ADAS) will increase safety and operating efficiencies.

Arrival has recently captured the interest of big corporations. Hyundai and Kia announced that they are investing around $110 million in Arrival and will jointly develop vehicles with them. UPS has been a partner of Arrival since 2016 and has both invested and ordered 10,000 of Arrival’s electric delivery vans. UPS was motivated to purchase these vehicles because of its efforts to cut emissions and delivery costs, both of which Arrival contends its vehicles will do. UPS plans to begin using some of these vehicles later this year.

The Arrival vans along with UPS’s Waymo project “will help us continue to push the envelope on technology and new delivery models that can complement the way our drivers work,” said Juan Perez, chief information and engineering officer at UPS.

Arrival sets itself apart from other electric delivery vehicle companies in a few ways. One is its plan to establish “microfactories” that take up 10,000 square meters and make around 10,000 vehicles a year for nearby customers. The use of microfactories instead of a large plant will significantly cut the costs of manufacturing. Another unique aspect of Arrival is its modular approach to production in which the vehicle’s weight, type, size, and shape can be customized according to the purchaser’s preference.

The environmental aspect of using electric vehicles over gas or diesel vehicles is a major component that will contribute to Arrival’s current and expected success. A report by the World Economic Forum revealed that deliveries will increase carbon emissions by 30% by 2030 unless there is effective intervention. One of the intervention options that will have the greatest impact on reducing CO2 emissions is switching to battery electric vehicles. According to the report, battery electric vehicles can reduce CO2 emissions by 16%. UPS currently has about 123,000 delivery vehicles in its fleet. If all goes well with the electrical vehicles it purchased then the vehicles currently in UPS’s use might be phased out which is the sort of intervention our environment needs.

“As mega-trends like population growth, urban migration, and e-commerce continue to accelerate, we recognize the need to work with partners around the world to solve both road congestion and pollution challenges for our customers and the communities we serve. Electric vehicles form a cornerstone to our sustainable urban delivery strategies. Taking an active investment role in Arrival enables UPS to collaborate on the design and production of the world’s most advanced electric delivery vehicles.”

Juan Perez of UPS

When Elon Musk unveiled the Cybertruck late last month, it sent shockwaves throughout the electric vehicle world, the stock market, and the internet. The sleek bodied, sharp-edged vehicle is reminiscent of the classic Back to the Future DeLorean. It has already been pre-ordered by over 200K customers, according to a tweet by Elon Musk. (It is important to note that a pre-order involves only a $100 deposit, which is refundable). Despite the large volume of pre-orders, Tesla’s stock price dropped by 5% in the days following the announcement — decreasing Musk’s net worth by over $750 million due to his significant holdings in Tesla. Notwithstanding the market reaction to the unveiling, the Cybertruck will likely be a success in the pick-up truck consumer market.

One of the entertainment factors of the reveal was the on-stage demonstration that the vehicle is built for abuse. Unlike other Tesla vehicles that are made of stamped alumni or steel, the Cybertruck is built using 30X cold-rolled steel. The body of the vehicle took a blow from a sledgehammer without leaving a scratch. However, one window did unexpectedly shatter when a steel ball was thrown into it. The truck is meant to withstand anything a user can throw at it, which will likely appeal to current pick-up truck owners who use their trucks for towing, camping, off-roading, or any other number of activities.

The Cybertruck appears to be slightly larger than the Ford F150 (the best-selling vehicle for over three decades), and was shown capable of beating the Ford F150 in a Tug of War. Tesla’s press release indicated that there are three versions of the truck that will ultimately be available.

Cybertruck is designed to have the utility of a truck and the performance of a sports car. The vehicle is built to be durable, versatile and capable, with exceptional performance both on-road and off-road. Cybertruck will come in three variants: Single Motor Rear-Wheel Drive, Dual Motor All-Wheel Drive, and Tri Motor All-Wheel Drive.

Base Model

  • Price:               $39,000
  • Range:             250 miles
  • Tow Rating:    7,500 lbs
  • 0-60 mph:        6.5 seconds

Dual Motor

  • Price:               $49,000
  • Range:             300 miles
  • Tow Rating:    10,000 lbs
  • 0-60 mph:        4.5 seconds

Tri-Motor*

  • Price:               $69,900
  • Range:             500 miles
  • Tow Rating:    14,000 lbs
  • 0-60 mph:        <3 seconds
    * Tri-Motor Production won’t begin until 2022

The Truck Market

It makes perfect sense that Tesla has finally entered the pick-up truck arena. Trucks account for roughly 15 percent of U.S. vehicle sales each year, a slice of the pie that has been growing since 2009. Americans buy nearly a million Ford F150’s every year. Not only is there market demand, but pick-up trucks are the perfect build for an electric vehicle; they are large and typically more expensive than sedans, and can better carry the large and (currently) costly batteries. 

Towing will also be easier with an electric truck, given the toque an electric vehicle can exert. Torque generally describes how quickly a vehicle will accelerate and its ability to pull a load. In an electric vehicle, high torque is available at low speeds and is relatively constant over a wide range of speeds. High torque enables an EV to move faster from a dead stop. This phenomenon can be described as “instant torque.”

However, perhaps consistent with the incredible increase in truck ownership over the past decade, truck owners frequently use their trucks much like other car owners: for commuting to work. So perhaps increased towing ability is not quite the selling point for Tesla.

A 500-mile range is incredibly impressive, considering many EVs have a range right at or below 300 miles per charge, with many below 200 miles. However, it is not likely to be seen as an improvement for truck drivers, who pleasure drive more than twice as often as other vehicle owners. Even at the top of the line, a 500-mile range is lower than an F150, which can get nearly 700 miles per tank (assuming 19 mpg and a 36-gallon tank).

If the Cybertruck can take control of a sizable segment of the truck market and begin chipping away at the market share of their low-fuel economy competitors, Tesla may begin making tangible progress towards decreasing domestic oil consumption and quicken the transition to an electrified transportation sector.

Ultimately, the sleek new design and popular appeal of the Tesla brand will likely make the Cybertruck a successful product. But it is doubtful that many purchasers will utilize the benefits an electric truck has over a traditional pick-up. They will instead likely use the vehicle as they would any other car, or as a status symbol. There are plenty of SUV and light-duty truck owners who will be glad to switch to an environmentally friendly alternative that still allows them to ride high above traffic. Others will be more than happy to end their reliance on highly-fluctuating fuel prices.

Regardless of the mixed reactions to Tesla’s new Cybertruck, the electric vehicle revolution is here. Some analysts have predicted that within twenty years, half of new vehicles sold will be electric. For the future of the planet, we may need them to be. One core tenet of climate change mitigation is fairly simple in concept, even if difficult in practice: electrify everything. Quickly phasing out polluting technologies—such as the internal combustion engine—and replacing them with electric batteries that are charged by renewable energy sources is our best shot to reduce emissions fast enough to limit some of the worst effects of climate change.

One thing standing in the way of our electrified future is—or as will be discussed below, may be—the lack of charging infrastructure. Electric vehicles today travel about 200 miles per charge. This is a shorter distance than most gasoline-fueled cars. And gasoline-powered cars need a five minute fill-up after traveling a few hundred miles, which is much less onerous than the hour or two that it would take to restore the 200 mile range on your electric vehicle even with the best available chargers.

But how much of a problem is the lack of infrastructure, really? The average driver only rarely takes road trips of several hundred miles. Indeed, the average car only drives forty miles per day. Level 2 EVSE charging infrastructure is relatively inexpensive to install in most homes, and powerful enough to charge a vehicle overnight. Given how cheap it already is to charge a vehicle at home, it’s no surprise that most existing public charging stations are rarely used.

This ease of charging at home is likely to be a key long-term difference in infrastructure needs between the incoming era of electric vehicles and the past era of gas-powered vehicles. It would be implausible to install a gas pump in your home garage, making publicly available filling stations placed throughout cities and towns a necessity. When it comes to electric vehicles however, far fewer stations should be needed on the surface streets because the vast majority of people driving on them will be able to get more than enough charge by simply plugging into a wall outlet each day.

Of course, EV charging infrastructure will still need to be built out in order to maximize the uptake and utility of the next generation of cars. While the vast majority of people drive no more than a few dozen miles on a daily basis, most will also expect to take the occasional long road trip during the useful life of their car. Even as modern EVs push towards a 300 mile battery range, having to stop for an hour or more to recharge every few hours will continue to be seen as impractical.

This means there will continue to be a need for superfast chargers. The good news is, speedy chargers are already on the horizon. Late last year, Porsche and BMW unveiled a prototype charging station that will supply roughly sixty miles of battery life in just three minutes, about the length of time it takes to fill up a gas tank today. Venture capital investments in EV charging infrastructure totaled $1.7 billion from 2010 through the first quarter of 2019, and the total amount rose every year from 2015 through 2018.

Such investment, and the continued technological improvement it brings, will be necessary for the EV takeover of the vehicle market to reach its full potential. But thanks to increasing battery ranges and the ease of charging at home, the need for buildout with day-to-day use in mind may not be so great as previously thought.

Last week’s release of the Intergovernmental Panel on Climate Change (IPCC) special report highlights the “rapid and far-reaching” societal transformations required in order to limit warming to 1.5, or even 2 degrees Celsius. A new study by researchers at the University of Michigan, published in the journal Environmental Science & Technology, highlights the role of connected and automated vehicles (CAVs) in ushering in a low-emissions future. This research sheds new light on a largely understudied aspect of the coming CAV revolution. In my first post for the Journal of Law and Mobility, I will summarize that study and provide key takeaways for policymakers.

The Michigan study identifies several factors that will cause CAVs to emit more greenhouse gases than comparable human-driven vehicles. The weight of sensors and the computer system necessary to operate an CAV, the power consumed by the computer system, in particular the mapping function used to create high definition charts of the car’s surroundings, and the increased drag from cameras and sensors mounted on the outside of the vehicle, all operate to increase emissions. Depending on the weight of the equipment and power usage of the computer, these factors were found to increase emissions by between 2.8% and 20% relative to a comparable human driven car.

These factors are expected to be partially, if not entirely, offset by the car’s ability to create more favorable traffic patterns and identify more efficient routes. This extra efficiency is expected to more than offset any increase in weight, power usage, and drag under some scenarios, and turn a relatively large emissions increase into a more modest one under others. All things considered, the study finds that the emissions impact of CAVs will range from a 9% reduction to a 5% increase.

Many of the obstacles to reducing CAV emissions are engineering challenges: reducing the weight and power consumption of computer systems, and improving the aerodynamics of external sensors. Policymakers role in solving these challenges are likely to primarily take the form of support for university research and/or tax credits for private sector research on improving the efficiency of CAVs.

Policymakers do however have a significant role to play in improving the network effects of automated vehicles, such as reduced congestion. After the proper levels of safety, security, and reliability are obtained, a high volume of CAVs on the road increases the efficiencies that can be gained through cars communicating with each other to ease the flow of traffic. Laws that ensure high standards for data privacy and CAV safety can give consumers the confidence needed to use CAVs at a higher rate. Regulatory schemes that ease the entrance of CAV fleets into a city’s vehicular landscape can promote early adoption.

Particularly as the technology advances, CAVs have a role to play in reducing harmful greenhouse gas emissions. Widespread adoption of the technology can maximize these benefits, paving the way for large fleets of CAVs that create strong network efficiencies. As the technology advances to a point of being safe for public use, policymakers should account for these potential benefits as they consider the advent of CAVs in their cities.