Delivery

The delivery industry is evolving in order to keep up with the rise of home delivery. Arrival, a startup company in the process of building electric delivery vans, plans to add new vehicles to the roads in the next few years. The company plans to offer vehicles with different battery capacities, but the current model maxes out at 200 miles of range. Arrival’s vehicles are expected to carry 500 cubic feet of packages and up to two tons. In order to be competitive with the direction towards automation, Arrival is designing its vehicles to accommodate autonomous systems which will allow for a smooth transition once autonomous driving is more widely used. In the meantime, the vehicle’s Advanced Driver-Assistance Systems (ADAS) will increase safety and operating efficiencies.

Arrival has recently captured the interest of big corporations. Hyundai and Kia announced that they are investing around $110 million in Arrival and will jointly develop vehicles with them. UPS has been a partner of Arrival since 2016 and has both invested and ordered 10,000 of Arrival’s electric delivery vans. UPS was motivated to purchase these vehicles because of its efforts to cut emissions and delivery costs, both of which Arrival contends its vehicles will do. UPS plans to begin using some of these vehicles later this year.

The Arrival vans along with UPS’s Waymo project “will help us continue to push the envelope on technology and new delivery models that can complement the way our drivers work,” said Juan Perez, chief information and engineering officer at UPS.

Arrival sets itself apart from other electric delivery vehicle companies in a few ways. One is its plan to establish “microfactories” that take up 10,000 square meters and make around 10,000 vehicles a year for nearby customers. The use of microfactories instead of a large plant will significantly cut the costs of manufacturing. Another unique aspect of Arrival is its modular approach to production in which the vehicle’s weight, type, size, and shape can be customized according to the purchaser’s preference.

The environmental aspect of using electric vehicles over gas or diesel vehicles is a major component that will contribute to Arrival’s current and expected success. A report by the World Economic Forum revealed that deliveries will increase carbon emissions by 30% by 2030 unless there is effective intervention. One of the intervention options that will have the greatest impact on reducing CO2 emissions is switching to battery electric vehicles. According to the report, battery electric vehicles can reduce CO2 emissions by 16%. UPS currently has about 123,000 delivery vehicles in its fleet. If all goes well with the electrical vehicles it purchased then the vehicles currently in UPS’s use might be phased out which is the sort of intervention our environment needs.

“As mega-trends like population growth, urban migration, and e-commerce continue to accelerate, we recognize the need to work with partners around the world to solve both road congestion and pollution challenges for our customers and the communities we serve. Electric vehicles form a cornerstone to our sustainable urban delivery strategies. Taking an active investment role in Arrival enables UPS to collaborate on the design and production of the world’s most advanced electric delivery vehicles.”

Juan Perez of UPS

There is no doubt that unmanned aerial vehicles (UAVs), i.e. drone aircraft or drones, are an increasingly popular and strangely normal aspect of our everyday lives in 2020. And how could they not be? When there is a product that can appeal to pretty much any and every one – from farmers wanting to efficiently monitor their crops, to those of us just looking to take the perfect selfie – it’s going to be explosively popular. Even military forces around the world are getting in on the action. The innovative uses for drones seem borderline infinite, and there is no questioning their utility even when applied in ways that may come as a surprise. 

One use that many people are likely familiar with is that of commercial delivery. A number of companies within the United States have been eyeing the drone delivery market for some time now, particularly UPS and Alphabet’s Wing. Typically, the Federal Aviation Administration’s (FAA) rules governing drone flight in the United States require, among other things, that the drone remain in the operator’s line of sight for the entirety of the flight. This generally goes for both hobbyists and commercial operators. However, the FAA, in an effort to encourage and not stifle innovation, created the Unmanned Aircraft Systems (UAS) Integration Pilot Program (IPP).

To promote continued technological innovation and to ensure the global leadership of the United States in this emerging industry, the regulatory framework for UAS operations must be sufficiently flexible to keep pace with the advancement of UAS technology, while balancing the vital Federal roles in protecting privacy and civil liberties; mitigating risks to national security and homeland security; and protecting the safety of the American public, critical infrastructure, and the Nation’s airspace.

Presidential Memorandum for the Secretary of Transportation, Unmanned Aircraft Systems Integration Pilot Program

Additionally, the FAA has in place one particular process that allows operators to obtain exemption from specific rules governing drone flight: Part 135 certification process. All IPP participants go through the Part 135 certification process, including those companies looking to dive into the package delivery market. Currently, “Part 135 certification is the only path for small drones to carry the property of another for compensation beyond visual line of sight.” Both UPS and Alphabet’s Wing are IPP participants and have been granted Part 135 certificates, although not for the same type of operations – you can check out the four types operations for which operators can be granted a Part 135 certificate here.

It was announced on October 1, 2019 that UPS subsidiary UPS Flight Forward was awarded a Part 135 Standard certification, the first ever. Flight Forward, in partnership with drone manufacturer Matternet, started in and has continued to hone its operation model for drone delivery within the healthcare industry, with WakeMed Hospital in Raleigh, NC as the starting point. It has been reported that one goal of the program is to test delivery of healthcare necessities in area where roads may not be a viable option – think natural disasters. 

“This is history in the making, and we aren’t done yet. . . . We will soon announce other steps to build out our infrastructure, expand services for healthcare customers and put drones to new uses in the future.”

David Abney, UPS chief executive officer

Recently, the Flight Forward drone delivery service program has expanded its services to the University of California San Diego (USCD) Health system where the company’s drones will be used to transport things like blood samples and documents short distances between centers.

Interestingly enough, a proposed rule from the FAA was just recently (February 3, 2020) published in the Federal Register. The proposal, titled Type Certification of Unmanned Aircraft Systems, essentially wants to open the door to more companies who want to get involved in small-package delivery via drone fleets. This type of regulatory framework for delivery drones should work much in the same way that the type certification process operates for other aircraft, a model-by-model certification process that allows approved models to then operate throughout the US. If you feel particularly strongly about this, the FAA is accepting public comment on the proposed rule until March 4, 2020.

This seems to be just the tip of the iceberg of what needs to be and may soon be done to promote widespread use of and explosive growth within the commercial drone delivery world, but it is definitely a big step toward getting that goal off the ground – no pun intended. If nothing else, this change is a good example of how the law is attempting to keep up with innovations in technology and increases in demand for such services, and how policymakers are remaining flexible in their approaches.

Cargo Bikes in NYC

These past few weeks millions of people went online, added various items to their cart, and hit “submit order.” From Thanksgiving until the end of December, the volume of packages hitting the road will be substantial. With Black Friday, Cyber Monday, and holiday shopping all taking place in a short time span, the resulting packages will cause delivery trucks in heavily populated cities to disrupt road traffic more than ever.

New York City (NYC) has the highest population density of any city in the United States with over 27,000 people per square mile. Not only is NYC the most populated, it also has more packages delivered than anywhere else in the country. There are nearly 1.5 million packages delivered a day in NYC and during the holiday season that number climbs even higher. When making deliveries, trucks park in bus lanes and bike lanes, double-park, cause a significant number of cyclist accidents, and contribute to congestion. Additionally, delivery trucks pollute the air by sitting in traffic and idling its engines throughout the day.

Delivery companies and the Department of Transportation (DOT) are recognizing the rate people are ordering online and have begun to realize that large trucks may not be the most feasible option to navigate the busy streets. Recently, the city approved a new program in which cargo bikes operated by Amazon, UPS, and DHL will be allowed to make deliveries for the next six months. The Commercial Cargo Bike Program consists of around 100 pedal-assisted, electronic cargo bikes that are ready to replace some of the delivery trucks on the road.

“There’s no doubt the rise in deliveries has caused chaos on our streets–but there are plenty of thoughtful solutions out there to make our streets safer and more sustainable. I’m excited to see DOT exploring this new technology which will help bring NYC’s freight and delivery systems into the 21st Century. I look forward to seeing these cargo bikes on the road and working with DOT in the near future to take a comprehensive look at how we manage these deliveries.”

City Council Speaker Corey Johnson

The goal of the program is to monitor and collect data on how the cargo bikes handle the streets by looking at the cargo bike’s speed, size, parking, use of bike lanes, and effect on overall traffic in Manhattan. The data will be assessed by the DOT to determine whether a more permanent implementation of cargo bikes is appropriate for NYC. In the meantime, cargo bikes are permitted to travel on the street and in bike lanes at a maximum speed of 12mph as well as park in existing commercial loading areas without paying the meters. According to DHL, their cargo bikes can hold 300 pounds, which depending on the size of the packages, could be around 100 to 150 shipments per day. For each cargo bike put on the road, there is meant to be one delivery truck taken off.

Other large cities such as Paris, London, Dublin, and Seattle, have found success in using cargo bikes. UPS has cargo bikes in over 30 cities all over the world. In NYC, however, Amazon is at the forefront of the cargo bike movement. Amazon’s cargo bikes comprise 90 of the initial 100 bikes deployed for the program and they hope to add more soon. Amazon began putting their cargo bikes on the streets before the Commercial Cargo Bike Program was officially approved. Their cargo bikes were first put to use ten months ago for Prime Now grocery deliveries.

The convenience, flexibility, and efficiency of cargo bikes make them just one of many possible solutions for package delivery in densely populated cities. Now that cargo bikes have the support of NYC and the DOT, residents might begin to see some much needed relief to the vehicle congestion caused by too many trucks on the road.

Last time I wrote about platooning, and the potential economic savings that could benefit the commercial trucking sector if heavy duty trucks were to implement the technology. This week, I’m writing about one of the current barriers to implementing platooning both as a commercial method, and in the larger scheme of highway driving.

One of the most readily identifiable barriers to the widespread implementation of truck platooning is the ‘Following Too Close’ (“FTC”) laws enforced by almost every state. There is currently a patchwork of state legislation which prevents vehicles from following too closely behind another vehicle. Violating these laws is negligence per se.

For those who don’t quite remember 1L torts, negligence per se essentially means “if you violate this statute, that proves an element of negligence.” Therefore, if one vehicle is following too closely behind another vehicle in violation of an FTC statute, that satisfies the breach element of negligence and is likely enough to be fined for negligent driving.

These laws are typically meant to prevent vehicles from following dangerously close or tailgating other vehicles. The state laws that regulate this conduct can be divided into roughly four categories. Some states prescribe the distance or time a driver must remain behind the vehicle in front of them; others impose a more subjective standard. The subjective standards are far more common than the objective standards.

Subjective Categories

  • Reasonable and Prudent” requires enough space between vehicles for a safe stop in case of an emergency. This FTC rule is the most common for cars and seems to be a mere codification of common-law rules of ordinary care.
  • “Sufficient space to enter and occupy without danger” requires trucks and vehicles with trailers to leave enough space that another vehicle may “enter and occupy such space without danger.” This is the most common rule for trucks.

Objective Categories

  • Distance-Based: Some states prescribe the distance at which a vehicle may follow another vehicle; others identify a proportionate interval based on distance and speed. These are the most common rules for heavy trucks and frequently set the minimum distance between 300 and 500 feet.
  • Time: Timing is the least common FTC, but the two jurisdictions that impose this rule require drivers to travel “at least two seconds behind the vehicle being followed.”

It is easy to see how, given the close distance at which vehicles need to follow to benefit from platooning, any of these laws would on their face prohibit platooning within their borders. However, several states have already enacted legislation which exempts the trailing truck in a platoon from their “Following Too Close” laws. As of April 2019, 15 states had enacted legislation to that effect. Additional states have passed legislation to allow platoon testing or pilot programs within their states.

However, despite some states enacting this legislation, a non-uniform regulatory scheme does not provide  the level of certainty that will incentivize investment in platooning technology. Uncertain state regulation can disincentivize interstate carriers from investing in platooning, and could lead to a system where platooning trucks only operate within single state boundaries.

Although the exemptions are a step in the right direction, non-uniformity will likely result in an overall lower platooning usage rate, limiting the wide-spread fuel efficiency and safety benefits that are derived when platooning is implemented on a large, interstate scale. Without uniform legislation that allows platooning to be operated consistently across all the states, the need for different systems will hinder the technology’s development, and the rate at which trucking companies begin to adopt it.

However, even if not all states pass legislation exempting platooning vehicles from their FTC laws, there could be a way around the subjective elements. The most common subjective law, “Reasonable and Prudent” requires only enough space that the vehicles can safely stop in case of an emergency. When considering a human driver this distance is likely dozens of feet, given the speed at which cars travel on the interstate. However, recall from last week that platooning vehicles are synchronized in their acceleration, deceleration, and braking.

If the vehicles travel in tandem, and brake at the same time and speed, any distance of greater than several feet would be considered “reasonable and prudent.” Perhaps what needs to be developed is a “reasonable platooning vehicle” standard, rather than a “reasonable driver” standard, when it comes to autonomous vehicle technology. Then again, considering the ever-looming potential for technological failure, it could be argued that following that close behind another heavy vehicle is never reasonable and prudent, once again requiring an exemption rather than an interpretive legal argument for a new “reasonableness” standard.

Either way, to ensure certainty for businesses, more states should exempt platooning vehicles from their “Following Too Close” laws. Otherwise, the technology may never achieve a scale that makes it worth the early investment.

One of the most exciting and economically advantageous aspects of autonomous vehicle technology is the ability for cars and heavy trucks to “platoon.” Platooning is a driver-assist technology that allows vehicles to travel in tandem, maintaining a close, constant distance. Imagine trucks are racers in a bicycle or foot race. By drafting closely behind one another, the vehicles reduce their energy (fuel) consumption.

I personally find that large-scale platooning should be the ultimate goal of autonomous vehicle technology; the potential time and fuel savings would be enormous if the highways were filled with vehicles drafting behind one another. Imagine a highway system without rubberneckers, the guy on the highway that floors it, and then slams on the breaks during rush hour, or the “Phantom Traffic Jam.” Imagine an organized “train” of cars and trucks instead, following at a close, but technologically safe distance (between 25 and 75-feet) and at a uniform speed.

This future is more likely to begin on a smaller scale, and in the commercial shipping sector, rather than in the consumer vehicle market. The work has already started with some platooning pilot programs involving heavy trucks.

These programs employ short-range communications technology and advanced driver assistance systems in their testing. The technology creates a seamless interface supporting synchronized actions; however, drivers are still needed to steer and monitor the system. When done with heavy commercial trucks — tractor-trailers, 18-wheelers, or semi-trucks (depending on what area of the country you live in) — the trucks are “coupled” through vehicle-to-vehicle (V2V) communication. The V2V technology allows the vehicles to synchronize acceleration, deceleration, and braking to increase efficiency and safety.

The economic incentives for platooning in the freight industry derive from the potential fuel savings, which come from reductions to aerodynamic drag. While both vehicles in a pair of platooning trucks save fuel, the rear vehicle typically saves significantly more. Tests conducted by the National Renewable Energy Laboratory demonstrated average fuel savings up to 6.4 percent for a pair of platooning trucks: a lower amount (up to 5.3 percent) for the lead truck and a higher amount (up to 9.7 percent) for the trailing truck. These numbers varied based on the size of the gap between the two trucks, and the driving speed. The ability to decrease fuel consumption in heavy freight vehicles represents an enormous area to reduce the cost of shipping.

Fuel costs account for roughly one-third of the trucking industries’ cost per mile; a typical heavy-duty freight vehicle incurs between $70,000 and $125,000 in fuel costs each year. Vehicles that reduce their fuel consumption by 6.4 percent would save $4,500 to $8,000 per year. These savings are potentially enormous when extrapolated across the more than 2-million tractor-trailers on the road. The ability to decrease shipping and transportation costs should be a substantial incentive for large shipping companies like Fed Ex, UPS, and Amazon. 

While getting the significant players in the transportation industry is crucial, an estimated 90% of the trucking companies in the U.S. are made up of fleets with six trucks or less, and 97% have fewer than 20. Converting existing truck cabs with the necessary technology could pose a substantial hardship for these small businesses. However, it is projected that owner-operators would recoup their investment in 10-months, and fleet operators would recoup theirs in 18-months. This relatively short period could incentivize even small-scale operators to invest in the technology.

Platooning technology could also help offset the recent spike in the average cost of truck operations. Most of these costs came from increases in driver wages and benefits, likely due to a shortage of long-haul truck drivers. The shortage of drivers is only expected to grow; the combination of long hours, inconsistent schedules, long stretches of solitude, and low pay have increased the turnover rate and disincentivized new drivers from entering the labor market. While the technology is not yet poised to run without drivers, a single truck driver would one day lead a platoon train of autonomous trucks, decreasing the need for drivers in every cab.

My vision of a highway filled with platooning vehicles may not be feasible yet, but with proper investment by businesses, platooning technology could become viable, and cost-effective, within a few years.

October 2019 Mobility Grab Bag

Every month brings new developments in mobility, so let’s take a minute to breakdown a few recent developments that touch on issues we’ve previously discussed in the blog:

New AV Deployments

This month saw a test deployment of Level 4 vehicles in London, which even allowed members of the public to be passengers (with a safety driver). Meanwhile, in Arizona, Waymo announced it will be deploying vehicles without safety drivers, though it appears only members of their early-access test group will be riding in them for now. We’ve written a lot about Waymo, from some early problems with pedestrians and other drivers, to the regulations placed on them by Arizona’s government, to their potential ability to navigate human controlled intersections.

Georgia Supreme Court Requires a Warrant for Vehicle Data

This Monday, the Georgia Supreme Court, in the case of Mobley v. State, ruled that recovering data from a vehicle without a warrant “implicates the Fourth Amendment, regardless of any reasonable expectations of privacy.” The court found that an investigator entering the vehicle to download data from the vehicle’s airbag control unit constituted “physical intrusion of a personal motor vehicle,” an action which “generally is a search for purposes of the Fourth Amendment under the traditional common law trespass standard.” Given the amount of data that is collected currently by vehicles and the ever-increasing amount of data that CAVs can and will collect, rulings like this are very important in dictating how and when law enforcement can obtain vehicle data. We’ve previously written about CAVs and the 4th Amendment, as well as other privacy implications of CAVs, both in regards to government access to data and the use of CAV data by private parties.  

Personal Cargo Bots Could Bring Even More Traffic to Your Sidewalk

In May, as part of a series on drones, I wrote about a number of test programs deploying small delivery bots for last-mile deliveries via the sidewalk. A recent Washington Post article highlights another potential contender for sidewalk space – personal cargo bots. Called “gita” the bot can travel at up to 6 mph as it uses it’s onboard cameras to track and follow its’ owner, via the owner’s gait. The bot’s developers see it as helping enhance mobility, as it would allow people to go shopping on foot without being concerned about carrying their goods home. For city-dwellers that may improve grocery trips, if they can shell out the $3,000+ price tag!

Even More Aerial Drones to Bring Goods to Your Door

Last month, as part two the drone series, I looked at aerial delivery drones. In that piece I mentioned that Google-owned Wing would be making drone deliveries in Virginia, and Wing recently announced a partnership with Walgreens that will be part of that test. Yesterday Wired pointed out that UPS has made a similar deal with CVS – though it remains to be seen if the drones will have to deliver the infamously long CVS receipts as well. As Wired pointed out, drugstores, since they carry goods that could lead to an emergency when a home runs out of them (like medication and diapers), speedy air delivery could fill a useful niche. So next time you’re home with a cold, you may be able to order decongestant to be flown to your bedside, or at least to the yard outside your bedroom window.

P.S. – While not related to any past writings, this article  is pretty interesting – Purdue scientists took inspiration from the small hairs on the legs of spiders to invent a new sensor that can ignore minor forces acting on a vehicle while detecting major forces, making it easier for CAVs and drones to focus computing power on important things in their environment without getting distracted.

The European Union recently adopted new rules to help consumers repair household appliances like refrigerators and televisions. The rules require manufacturers to provide spare parts for years after sale – the number of years depending on the device. The “Ecodesign Directive” is intended to help protect the environment by extending the life of consumer appliances. The regulation also applies to servers, requiring firmware updates for 7 years post-production. These regulations are part of a larger battle over consumers’ right to repair their belongings, including vehicles. Vehicles are already part of the right to repair discussion, and the deployment of technically complicated CAVs will ramp up that conversation, as some manufacturers seek to limit the ability of individuals to repair their vehicles.

One current battle over the right to repair is taking place in California. In September of last year, the California Farm Bureau, the agricultural lobbying group that represents farmers, gave up the right to purchase repair parts for farm equipment without going through a dealer. Rather than allowing farmers to buy parts from whomever they’d like, California farmers have to turn to equipment dealers, who previously were unwilling to even allow farmer’s access to repair manuals for vehicles they already owned. A big part of the dispute stems from companies like John Deere placing digital locks on their equipment that prevent “unauthorized” repairs – i.e. repairs done by anyone other than a John Deere employee. The company even made farmers sign license agreements forbidding nearly all repairs or modifications, and shielding John Deere from liability for any losses farmers may suffer from software failures. Some farmers resorted to using Ukrainian sourced firmware to update their vehicle’s software, rather than pay to hire a John Deere technician. The California case is especially ironic, as the state has solid right to repair laws for other consumer goods, requiring companies to offer repairs for electronics for 7 years after production (though companies like Apple have been fighting against the state passing even more open right to repair laws).

In 2018, supporters of the right to repair were boosted by a copyright decision from the Librarian of Congress, which granted an exception to existing copyright law to allow owners and repair professionals to hack into a device to repair it. The exception is limited, however, and doesn’t include things like video game consoles, though its’ language did include “motorized land vehicles.”

So how could battles over the right to repair influence the deployment of CAVs? First off, given the amount of complicated equipment and software that goes into CAVs, regulations like those recently adopted in the EU could help extend the lifespan of a vehicle. Cars last a long time, with the average American vehicle being 11.8 years old. Right to repair laws could require manufactures to supply the parts and software updates needed to keep CAVs on the road. New legislation could protect consumer access to the data within their vehicle, so they don’t have to rely on proprietary manufacturer systems to know what’s going on inside their vehicle. A 2011 study of auto repair shops showed a 24% savings for consumers who used a third-party repair shop over a dealership, so independent access to data and spare parts is vital to keeping consumer maintenance costs down. People are very used to taking their cars to independent repair shops or even fixing them at home, and many consumers are likely to want to keep their ability to do so as CAVs spread into service.

P.S. – Two updates to my drone post from last week:

Update 1 – University of Michigan (Go Blue!) researchers have demonstrated a drone that can be used to place shingles on a roof, using an interesting system of static cameras surrounding the work-site, rather than on-board cameras, though it remains to be seen how many people want a nail gun equipped drone flying over their head…

Update 2 – UPS has been granted approval to fly an unlimited number of delivery drones beyond line-of-sight, though they still can’t fly over urban areas. They have been testing the drones by delivery medical supplies on a North Carolina hospital campus.

Last week I covered the various companies who are seeking to use aerial drones to deliver goods to your door. Today, in the third part to my series on delivery (you’ll find Part 1 here, and an even earlier post on delivery, from December of 2018, here), I’m going to look at recent proposals to use automated vehicles to deliver consumer goods.

As an introduction, I’m going to include a paragraph from that December 2018 post as an introduction to some of the ways automated vehicles are being used to make deliveries :

The potential for CAVs as delivery vehicles is already being tested by companies like Domino’s and Kroger, among others. Earlier this year Toyota announced delivery partnerships with Amazon and Pizza Hut, and Waymo’s CEO recently highlighted it as an area of opportunity.  This week the New York Times profiled Nuro, the start-up working with Kroger to test robotic delivery cars in Scottsdale, Ariz. Nuro’s vehicles are designed in-house, and look like “toasters-on-wheels,” and are currently followed everywhere they go by human safety drivers in conventionally driven “shadow car.” When the vehicle stops for a delivery, customers enter a PIN code into a small touch pad to open the compartment containing their order. The current charge for same-day delivery using the system is around $6. Ford has also flagged the delivery market as an area they’d like to explore, citing projections that by 2026 the last-mile delivery market for CAVs will hit $130 billion.

Don’t Forget to Tip Your (Robotic) Delivery Driver – Dec. 21, 2018

Since that post, Domino’s has announced a partnership with Nuro as well, with plans to test in Houston at some point this year. Walmart has also jumped in on the action – partnering with another AV developer, Gatik. For now Walmart’s test is limited to a 2-mile route between two of their stores in the company’s hometown of Bentonville, Arkansas. Why the interest? In part because of the potential cost savings – a recent Ford estimate calculates AVs could reduce the cost per mile for deliveries from $2.50 to $1. No doubt the combination of lower costs and ever-greater demand for delivery is a powerful motivator, pushing companies to explore not only AVs, but also drones and delivery bots, as discussed in Parts I and II of this series.

Beyond last-mile deliveries, there is a great deal of interest in automating semi-trucks and other large delivery vehicles. One company, TuSimple, is working with both the U.S. Postal Service (USPS) and UPS to move packages between cities. Interestingly, in UPS’ case, the company only announced the partnership after TuSimple had already been delivering goods for months – which seems to indicate the program is not just a grab for positive PR. The USPS’ test was more limited, running for two-weeks and five round trips. All of the trips included a safety driver and an engineer, and both tests were carried out in the Southwest. Meanwhile, in Sweden, a completely driverless electric truck was deployed in May, a global first. Given a nation-wide shortage of truck drivers (a recent estimate puts the U.S. deficit at roughly 60,000 drivers), automated trucks present a solution that doesn’t overly disrupt a truck-heavy commercial delivery system.

But what would the wide-spread adoption of AVs as part of the delivery ecosystem mean? We can already see that the demand for faster and faster delivery is taking its toll. Recently, the NY Times and Buzzfeed News both published articles detailing the human cost of Amazon’s push for same or next-day delivery. Under-trained drivers pushed to the limit have killed people in seemingly avoidable accidents that don’t often happen with more highly-trained delivery drivers (like those used by the USPS, UPS, and FedEx). Amazon has avoided liability by using a number of third-party companies as contractors, making those companies, and not Amazon, responsible for accidents. AVs would certainly be safer for the public, as they wouldn’t fall prey to the pressures of human drivers, though that does nothing to alleviate the pressures on the human delivery people, who would still be needed to move goods from the vehicle to a door. At the same time, Amazon may continue to escape liability, if the AVs remain owned by third parties. There is also the greater question of the environmental impact of the growing number of delivery vehicles on the road (not to mention the waste created by packing materials and shipping boxes). I’ll leave a greater discussion about those issues to future posts and other forums, but those questions, among so many others (privacy, cybersecurity, and traffic management among them) are important to consider as automated delivery vehicles of all kinds begin to fill our streets and skies.

P.S. – In a follow up to last week’s blog, the USPS has stated to investigate the use of aerial drones, and is now seeking information from drone operators and developers.

This is the much-delayed second part in a series of posts I started earlier this year. In that first post I discussed how companies are experimenting with small delivery robots that crawl along sidewalks to deliver goods right to your door. However, the sidewalk is not the only place where delivery drones may soon be found, as many companies are interested in using aerial drones to bring their products right to consumers.

In April, Wing, a division of Google parent company Alphabet, was given approval to start delivering goods via drone in Canberra, Australia. At launch, the drones were delivering food, medicine, and other products from 12 local businesses. This formal launch came after a trial period that ran for 18 months and 3,000 deliveries. Also in April, Wing received an FAA certification typically used for small airlines, as they begin to plan U.S. based tests, again with the intent to partner with local businesses. Not to be left behind, in June Amazon revealed it’s own delivery drone, which is indented to bring good directly from their warehouses to nearby customers within 30 minutes. Also in June, Uber announced a plan to partner with McDonalds to test delivery drones in San Diego. In Ohio, a partnership between the Air Force and the state government will allow drones to test outside of line-of-sight (a range that most civilian drones are currently limited to by the FAA). One company that intends to take part in the Ohio testing is VyrtX, which is looking to use drones to deliver human organs for transplant. 

But just what would wider use of such delivery drones mean for society? What would it mean to live in a world with robots buzzing around above our heads? In the Australian tests there were complaints about noise, with some residents claiming the sound of the machines caused them significant distress. In January of this year an unidentified drone shut down London’s Heathrow Airport, showing what can happen when drones wander into places they’re not welcome. In February of this year NASA announced two tests of “urban drone traffic management,” one in Texas, and the other in Nevada. Such a system would no doubt be necessary before widespread deployment of any of the systems so far proposed – to prevent incidents like the one in London.   

There is also a major privacy concern with drones collecting data as they fly above homes and businesses. This concern extends beyond just what privately owned drones may find, but also what law enforcement could collect. In Florida v. Riley, a 1988 case, the Supreme Court found that there is not reasonable expectation of privacy from aircraft (in that case, a police helicopter) flying in navigable airspace above a person’s home, when the air craft is flying within FAA regulations. So drones would provide a useful tool for investigations, and one that is limited only by FAA rules.

There are a lot of unanswered questions about delivery drones – and given the highly-regulated nature of all forms of air travel, the federal government, via the FAA, currently has a lot of power over just what can go on in U.S. airspace. What remains to be seen is if this regulatory structure will stifle drone development or instead insure that any market for delivery drones is developed deliberately, rather than ad hoc, with an emphasis on safety.

P.S. – A brief follow-up to my last article – Ford recently partnered with Agility Robotics on a new form of last mile delivery bot, a bipedal unit designed to carry up to 40 pounds. Could it become the C-3PO to the R2-D2-like bots already in testing?

All the way back in December, I wrote about how various companies, including Amazon (in partnership with Toyota), Postmates, Domino’s and Kroger were all working on using CAVs and drones to deliver goods to consumers. Since then there have been a number of news stories on similar projects across the globe, which deserve some attention, as you’ll see in this, the first of three posts:

On the Ground

In my December post I talked about Postmates’ testing of delivery robots that could bring products directly to your door. This winter similar ‘bots were deployed on the campuses of the University of the Pacific (sponsored by PepsiCo), and George Mason University (via start-up Starship Technologies and food-services giant Sodexo). College campuses, which tend to feature greater walkability and an always snack-craving populace, seem to be the perfect testing ground for such systems. And the robots seem to have made a difference in the eating habits, at least at George Mason – with an additional 1,500 breakfast orders being delivered via robot. This may be due to the fact the robots were integrated into the campus meal plan, meaning students weren’t just able to order snacks, but could order full meals and pay for them via their meal plan.  

While these delivery services may be seen as saviors to hung-over college students in need of a bacon, egg, and cheese sandwich, the expansion of such programs does raise issues. Just as ridesharing has changed the way cities have to manage curb space, delivery ‘bots raise questions of sidewalk management. Just how much of public space should we cede to commercial use? How will the ‘bots be programmed to “share the road” with pedestrians. Of course, that may not be as big of an issue in more sprawling American cites that don’t have the same density of foot traffic. They’ll also have to content with being messed with by humans, as was the case in this video, where a ‘bot’s cameras were intentionally covered in snow (there is a happy ending, as seen in the footage – after a good Samaritan cleaned off  the camera the ‘bot continues on its way, after saying “thank you!” to its’ human helper). In an attempt to get ahead of these issues San Francisco banned sidewalk delivery ‘bots in 2017, and has only slowly opened up room for testing. Will other cities follow suit? Or will they open the floodgates? Currently, the California DMV is considering new rules on delivery ‘bots and car-sized autonomous delivery vehicles, so look for a follow-up blog once those are out.

Given my continued interest in data collection and privacy, (an interest echoed in more recent blog posts by Kevin – available here, here, and here) I’d be remiss to not flag those issues here. (those issues also come up in the context of aerial deliveries, discussed in our next post). Not only would sidewalk based delivery ‘bots collect data on the items you order and when, they could potentially collect data about your home or its surrounding environment (think back to when Google was caught collecting wi-fi data with its’ Street View cars).

In our next post – aerial delivery drones!

This fall we’ve spent a fair amount of time talking about how connected and automated vehicles (CAVs) will change the structure of our cities, from the curb, to public transit, and beyond. In my last post before the holidays, I want to take a look at how CAVs could change the way goods are transported and delivered within cities. While they probably won’t reach Santa-levels of delivery efficiency, CAVs may help make last-mile deliveries more efficient (and could help fill the current shortage of truck drivers in the US, but that’s a subject for another day).

CAVs are already being tested as delivery vehicles by companies like Domino’s and Kroger, while earlier this year Toyota announced delivery partnerships with Amazon and Pizza Hut, and Waymo’s CEO recently highlighted it as an area of opportunity.  This week the New York Times profiled Nuro, the start-up working with Kroger to test robotic delivery cars in Scottsdale, Ariz. Nuro’s vehicles are designed in-house, and look like “toasters-on-wheels.” Currently they followed everywhere they go by human safety drivers in conventionally driven “shadow car,” since the vehicles are still in testing. When the vehicle stops for a delivery, customers enter a PIN code into a small touch pad to open a compartment containing their order. The current charge for same-day delivery using the system is around $6. Ford has also flagged the delivery market as an area they’d like to explore, citing projections that, by 2026, the last-mile delivery market for CAVs will hit $130 billion.

But the roads are not the only path automated vehicles may soon tread in their mission to bring you your takeout order. A number of companies, including Postmates, are working on delivery robots that will cruse down the sidewalk and roll right up to your door. Last year I even personally witnessed Postmates’ bot rolling along the streets of Washington. As exciting as it would be to have R2-D2’s cousin deposit an order of egg rolls on your doorstep, the deployment of delivery bots raises an interesting question of how much space we’re willing to give up to automated devices. The sidewalk is a human dominated space, and, especially in cities, is already busy with foot traffic. Will people be willing to cede some of this space to a robot? Yet another question that city regulators and individual citizens will be forced to answer as automation makes greater inroads to our daily lives.

P.S. – Last week a delivery robot caught fire in Berkeley, leading some locals to build a memorial in its honor.

The Battle For the Curb

Recently, Kevin wrote about how CAVs could alter the shape of cities. While CAV deployment is still in its infancy, the boom in ride sharing is already changing the design of cities. In Washington, D.C. the city government has announced the creation of five pickup and drop off zones that are reserved for ride shares 24 hours a day. The zones are also used for commercial loading and unloading, and are located near highly trafficked areas.

The creation of these zones in D.C. are part of a greater discussion of how cities use the curb. Right now, there is a lot of competition for the curb, from parking meters, to bike lanes, to drop off zones like the ones in D.C. And companies like Coord have started to keep track of everything that is going on near the curb, with an intent to build out a database that can be used by city planners and anyone else interested in what’s happening at street level. Any changes that CAVs make to cities will no doubt start at the curb – which means city governments need to figure out just what’s going to happen on the curb. Will cities be willing to give up their venue from street parking? Or will a boom in AVs cause that revenue to disappear on its own?