Automation and Jobs

Developments in technology have led to an increased reliance on artificial intelligence and autonomy in various vehicles such as cars, planes, helicopters and trains. The latest vehicles to implement autonomous technology into their operations are shipping vessels. Autonomous ships will transform the industry and current regulations are being reassessed to determine the best way to include this futuristic way of shipping.

he shipping industry is regulated on a global level and it remains one of the most heavily regulated industries today. International shipping is principally regulated by the International Maritime Organization, a United Nations agency responsible for the safety of life at sea and the protection of the marine environment. The International Maritime Organization (IMO) developed a comprehensive framework of global maritime safety regulations that was adopted from international conventions. In order to be proactive, IMO initiated a regulatory scoping exercise on Maritime Autonomous Surface Ships (MASS). The scoping exercise is led by IMO’s Maritime Safety Committee and is expected to be completed by 2020. The goal of the exercise is to determine how autonomous ships may be implemented into regulations and will touch on issues such as safety, security, liability, the marine environment and the human element.

In order to assess the scope of differing levels of autonomous ships, IMO defined four degrees of autonomy. The lowest degree of autonomy involves automated processes that can control the ship at times. Seafarers will remain in charge of operating and controlling the ship when the automated system is not activated. The second degree is a remotely controlled ship with seafarers still on board. The ship will be controlled from another location but the seafarers on board will be able to take control if necessary. The next degree is a remotely controlled ship without any seafarers on board. Lastly, the highest degree of autonomy is a fully autonomous, unmanned ship that is equipped with the ability to make decisions and take action by itself.

Several companies have already begun implementing autonomous capabilities into their ships and the technology is rapidly developing. While the scoping exercise is underway, the Maritime Safety Committee approved interim guidelines for trials to be completed on existing and emerging autonomous ships. The trials should be generic and goal-based and take a precautionary approach to ensure the operations are safe, secure, and environmentally sound. In 2018, Rolls-Royce conducted its first test of an autonomous ferry named Falco. To demonstrate two degrees of autonomy, the ferry was fully autonomous on its outward voyage and then switched to a remotely controlled operation on its return to port. The controller was in a command center 30 miles away and he successfully took over operations of the ship and guided it to the dock.

Autonomous ships are expected to improve safety, reduce operating costs, increase efficiency and minimize the effects of shipping on the environment. An increased reliance on autonomy will reduce the chance for human error thereby improving safety. Human error accounts for 75-96% of marine accidents and accounted for $1.6 billion in losses between 2011 and 2016. Operational costs are also expected to decrease as there will be little to no crew on board. Crew costs can constitute up to 42% of a ship’s operating costs. If there is no crew then accommodations such as living quarters, air conditioning and cooking facilities can be eliminated. Further, a ship free from crew accommodations and seafarers will make voyages more efficient because the ship will have an alternate design and an increased carrying capacity. Lastly, autonomous ships may prove to be better for the environment than current vessels. The ships are expected to operate with alternative fuel sources, zero-emissions technologies and no ballast. 

As we have seen in other transportation industries, regulation for autonomous vehicles falls far behind the technological innovation. By taking a proactive approach in the case of autonomous shipping, IMO may be ready to create regulations that better reflect the future of shipping within the next decade. 

One of the most exciting and economically advantageous aspects of autonomous vehicle technology is the ability for cars and heavy trucks to “platoon.” Platooning is a driver-assist technology that allows vehicles to travel in tandem, maintaining a close, constant distance. Imagine trucks are racers in a bicycle or foot race. By drafting closely behind one another, the vehicles reduce their energy (fuel) consumption.

I personally find that large-scale platooning should be the ultimate goal of autonomous vehicle technology; the potential time and fuel savings would be enormous if the highways were filled with vehicles drafting behind one another. Imagine a highway system without rubberneckers, the guy on the highway that floors it, and then slams on the breaks during rush hour, or the “Phantom Traffic Jam.” Imagine an organized “train” of cars and trucks instead, following at a close, but technologically safe distance (between 25 and 75-feet) and at a uniform speed.

This future is more likely to begin on a smaller scale, and in the commercial shipping sector, rather than in the consumer vehicle market. The work has already started with some platooning pilot programs involving heavy trucks.

These programs employ short-range communications technology and advanced driver assistance systems in their testing. The technology creates a seamless interface supporting synchronized actions; however, drivers are still needed to steer and monitor the system. When done with heavy commercial trucks — tractor-trailers, 18-wheelers, or semi-trucks (depending on what area of the country you live in) — the trucks are “coupled” through vehicle-to-vehicle (V2V) communication. The V2V technology allows the vehicles to synchronize acceleration, deceleration, and braking to increase efficiency and safety.

The economic incentives for platooning in the freight industry derive from the potential fuel savings, which come from reductions to aerodynamic drag. While both vehicles in a pair of platooning trucks save fuel, the rear vehicle typically saves significantly more. Tests conducted by the National Renewable Energy Laboratory demonstrated average fuel savings up to 6.4 percent for a pair of platooning trucks: a lower amount (up to 5.3 percent) for the lead truck and a higher amount (up to 9.7 percent) for the trailing truck. These numbers varied based on the size of the gap between the two trucks, and the driving speed. The ability to decrease fuel consumption in heavy freight vehicles represents an enormous area to reduce the cost of shipping.

Fuel costs account for roughly one-third of the trucking industries’ cost per mile; a typical heavy-duty freight vehicle incurs between $70,000 and $125,000 in fuel costs each year. Vehicles that reduce their fuel consumption by 6.4 percent would save $4,500 to $8,000 per year. These savings are potentially enormous when extrapolated across the more than 2-million tractor-trailers on the road. The ability to decrease shipping and transportation costs should be a substantial incentive for large shipping companies like Fed Ex, UPS, and Amazon. 

While getting the significant players in the transportation industry is crucial, an estimated 90% of the trucking companies in the U.S. are made up of fleets with six trucks or less, and 97% have fewer than 20. Converting existing truck cabs with the necessary technology could pose a substantial hardship for these small businesses. However, it is projected that owner-operators would recoup their investment in 10-months, and fleet operators would recoup theirs in 18-months. This relatively short period could incentivize even small-scale operators to invest in the technology.

Platooning technology could also help offset the recent spike in the average cost of truck operations. Most of these costs came from increases in driver wages and benefits, likely due to a shortage of long-haul truck drivers. The shortage of drivers is only expected to grow; the combination of long hours, inconsistent schedules, long stretches of solitude, and low pay have increased the turnover rate and disincentivized new drivers from entering the labor market. While the technology is not yet poised to run without drivers, a single truck driver would one day lead a platoon train of autonomous trucks, decreasing the need for drivers in every cab.

My vision of a highway filled with platooning vehicles may not be feasible yet, but with proper investment by businesses, platooning technology could become viable, and cost-effective, within a few years.

While AVs have a lot of technological leaps to make before widespread deployment, developers and governments alike also need to also consider the human factors involved, including good old fashioned human fear. Earlier this year, a AAA study showed that almost three out of four (71%) Americans are afraid to ride in an AV. This is a 10% rise in apprehension from earlier studies, a trend that could be connected to the publicity around the 2018 Uber crash in Tempe, Ariz., where a test vehicle struck and killed a pedestrian. This lack of trust in AVs alone should be concerning to developers, but in some places that lack of trust has turned into outright enmity.

Test deployments, like the one undertaken by Waymo in Arizona, have become the targets of anger from drivers and pedestrians, including an incident where man pointed a gun at a passing Waymo test vehicle, in full view of the AV’s safety driver. In that case, the man with the weapon (who was arrested) claimed he hated the vehicles, specifically citing the Uber crash as a reason for his anger. Waymo test vehicles have been also been pelted with rocks, had their tires slashed, and motorists have even tried to run them off the road. The incidents have led to caution on the part of Waymo, who has trained their drivers on how to respond to harassment (including how to spot vehicles that are following them, as witnessed by a group of Arizona Republic reporters last December). Arizona is not the only place where this has happened – in California, during a 3 month period of 2018, 2 of the 6 accidents involving AVs were caused by other drivers intentionally colliding with the AV.

So where is this anger coming from? For some in Arizona, it was from feeling that their community was being used as a laboratory, with them as guinea pigs, by AV developers. Ironically, that line of thought has been cited by a number of people who currently oppose the deployment of test AVs in and around Silicon Valley. It’s rather telling that the employees of many of the companies pushing for AV testing don’t want it to occur in their own towns (some going as far as to threaten to “storm city hall” if testing came to Palo Alto…). Other objections may stem from people seeing AVs as a proxy for all automation, and the potential loss of jobs that entails.

So what can be done to make people trust AVs, or at least accept them enough to not run them off the road? On the jobs front, in June a group of Senators introduced a bill to have the Labor Department track jobs being displaced by automation. Responding to the changes brought on by automation is a center point of Democratic Presidential Candidate Andrew Yang’s campaign, and the issue has been raised by other candidates as well. The potential of automation to take away jobs is a long-standing issue made more visible by AVs on the road, and one that won’t be solved by AV proponents alone. What AV supporters have done and can continue to do is attempt to educate the public on now only potential befits of AV deployment (which PAVE, an industry coalition has done), but also better explain just how AV technology works. At least part of the AV fear stems from not understanding how the tech actually operates, and transparency in that vein could go a long way. Future test projects also need to be sure to get input from communities before they start testing, to ease the feeling of AVs being imposed upon an unwilling neighborhood. A recent debate over AV testing in Pittsburgh, where the city obtained funds for community outreach only after approving testing, leading to push back from community members, is a good example of how a proper pre-testing order-of-operations is vital.

For now, there is clearly a lot of room for public engagement and education. Developers should take advantage of this period where AVs are in the public eye without being widely deployed to build trust and understanding, so that once the vehicles start appearing everywhere they are met with open arms, or at least tolerated, rather than ran off the road. After all, while AVs themselves may not feel road rage, it’s already clear they can be victims of it.

P.S. – If you’re interested in learning more about negative reactions to robots, a good starting point is this NY Times article from January 2018.