Platooning: No Truck Left Behind (Part 1 of 2)

One of the most exciting and economically advantageous aspects of autonomous vehicle technology is the ability for cars and heavy trucks to “platoon.” Platooning is a driver-assist technology that allows vehicles to travel in tandem, maintaining a close, constant distance. Imagine trucks are racers in a bicycle or foot race. By drafting closely behind one another, the vehicles reduce their energy (fuel) consumption.

I personally find that large-scale platooning should be the ultimate goal of autonomous vehicle technology; the potential time and fuel savings would be enormous if the highways were filled with vehicles drafting behind one another. Imagine a highway system without rubberneckers, the guy on the highway that floors it, and then slams on the breaks during rush hour, or the “Phantom Traffic Jam.” Imagine an organized “train” of cars and trucks instead, following at a close, but technologically safe distance (between 25 and 75-feet) and at a uniform speed.

This future is more likely to begin on a smaller scale, and in the commercial shipping sector, rather than in the consumer vehicle market. The work has already started with some platooning pilot programs involving heavy trucks.

These programs employ short-range communications technology and advanced driver assistance systems in their testing. The technology creates a seamless interface supporting synchronized actions; however, drivers are still needed to steer and monitor the system. When done with heavy commercial trucks — tractor-trailers, 18-wheelers, or semi-trucks (depending on what area of the country you live in) — the trucks are “coupled” through vehicle-to-vehicle (V2V) communication. The V2V technology allows the vehicles to synchronize acceleration, deceleration, and braking to increase efficiency and safety.

The economic incentives for platooning in the freight industry derive from the potential fuel savings, which come from reductions to aerodynamic drag. While both vehicles in a pair of platooning trucks save fuel, the rear vehicle typically saves significantly more. Tests conducted by the National Renewable Energy Laboratory demonstrated average fuel savings up to 6.4 percent for a pair of platooning trucks: a lower amount (up to 5.3 percent) for the lead truck and a higher amount (up to 9.7 percent) for the trailing truck. These numbers varied based on the size of the gap between the two trucks, and the driving speed. The ability to decrease fuel consumption in heavy freight vehicles represents an enormous area to reduce the cost of shipping.

Fuel costs account for roughly one-third of the trucking industries’ cost per mile; a typical heavy-duty freight vehicle incurs between $70,000 and $125,000 in fuel costs each year. Vehicles that reduce their fuel consumption by 6.4 percent would save $4,500 to $8,000 per year. These savings are potentially enormous when extrapolated across the more than 2-million tractor-trailers on the road. The ability to decrease shipping and transportation costs should be a substantial incentive for large shipping companies like Fed Ex, UPS, and Amazon. 

While getting the significant players in the transportation industry is crucial, an estimated 90% of the trucking companies in the U.S. are made up of fleets with six trucks or less, and 97% have fewer than 20. Converting existing truck cabs with the necessary technology could pose a substantial hardship for these small businesses. However, it is projected that owner-operators would recoup their investment in 10-months, and fleet operators would recoup theirs in 18-months. This relatively short period could incentivize even small-scale operators to invest in the technology.

Platooning technology could also help offset the recent spike in the average cost of truck operations. Most of these costs came from increases in driver wages and benefits, likely due to a shortage of long-haul truck drivers. The shortage of drivers is only expected to grow; the combination of long hours, inconsistent schedules, long stretches of solitude, and low pay have increased the turnover rate and disincentivized new drivers from entering the labor market. While the technology is not yet poised to run without drivers, a single truck driver would one day lead a platoon train of autonomous trucks, decreasing the need for drivers in every cab.

My vision of a highway filled with platooning vehicles may not be feasible yet, but with proper investment by businesses, platooning technology could become viable, and cost-effective, within a few years.