There is no doubt that unmanned aerial vehicles (UAVs), i.e. drone aircraft or drones, are an increasingly popular and strangely normal aspect of our everyday lives in 2020. And how could they not be? When there is a product that can appeal to pretty much any and every one – from farmers wanting to efficiently monitor their crops, to those of us just looking to take the perfect selfie – it’s going to be explosively popular. Even military forces around the world are getting in on the action. The innovative uses for drones seem borderline infinite, and there is no questioning their utility even when applied in ways that may come as a surprise. 

One use that many people are likely familiar with is that of commercial delivery. A number of companies within the United States have been eyeing the drone delivery market for some time now, particularly UPS and Alphabet’s Wing. Typically, the Federal Aviation Administration’s (FAA) rules governing drone flight in the United States require, among other things, that the drone remain in the operator’s line of sight for the entirety of the flight. This generally goes for both hobbyists and commercial operators. However, the FAA, in an effort to encourage and not stifle innovation, created the Unmanned Aircraft Systems (UAS) Integration Pilot Program (IPP).

To promote continued technological innovation and to ensure the global leadership of the United States in this emerging industry, the regulatory framework for UAS operations must be sufficiently flexible to keep pace with the advancement of UAS technology, while balancing the vital Federal roles in protecting privacy and civil liberties; mitigating risks to national security and homeland security; and protecting the safety of the American public, critical infrastructure, and the Nation’s airspace.

Presidential Memorandum for the Secretary of Transportation, Unmanned Aircraft Systems Integration Pilot Program

Additionally, the FAA has in place one particular process that allows operators to obtain exemption from specific rules governing drone flight: Part 135 certification process. All IPP participants go through the Part 135 certification process, including those companies looking to dive into the package delivery market. Currently, “Part 135 certification is the only path for small drones to carry the property of another for compensation beyond visual line of sight.” Both UPS and Alphabet’s Wing are IPP participants and have been granted Part 135 certificates, although not for the same type of operations – you can check out the four types operations for which operators can be granted a Part 135 certificate here.

It was announced on October 1, 2019 that UPS subsidiary UPS Flight Forward was awarded a Part 135 Standard certification, the first ever. Flight Forward, in partnership with drone manufacturer Matternet, started in and has continued to hone its operation model for drone delivery within the healthcare industry, with WakeMed Hospital in Raleigh, NC as the starting point. It has been reported that one goal of the program is to test delivery of healthcare necessities in area where roads may not be a viable option – think natural disasters. 

“This is history in the making, and we aren’t done yet. . . . We will soon announce other steps to build out our infrastructure, expand services for healthcare customers and put drones to new uses in the future.”

David Abney, UPS chief executive officer

Recently, the Flight Forward drone delivery service program has expanded its services to the University of California San Diego (USCD) Health system where the company’s drones will be used to transport things like blood samples and documents short distances between centers.

Interestingly enough, a proposed rule from the FAA was just recently (February 3, 2020) published in the Federal Register. The proposal, titled Type Certification of Unmanned Aircraft Systems, essentially wants to open the door to more companies who want to get involved in small-package delivery via drone fleets. This type of regulatory framework for delivery drones should work much in the same way that the type certification process operates for other aircraft, a model-by-model certification process that allows approved models to then operate throughout the US. If you feel particularly strongly about this, the FAA is accepting public comment on the proposed rule until March 4, 2020.

This seems to be just the tip of the iceberg of what needs to be and may soon be done to promote widespread use of and explosive growth within the commercial drone delivery world, but it is definitely a big step toward getting that goal off the ground – no pun intended. If nothing else, this change is a good example of how the law is attempting to keep up with innovations in technology and increases in demand for such services, and how policymakers are remaining flexible in their approaches.

On Thursday, January 16, 2020, the Official Report of the Special Committee to review the Federal Aviation Administration’s Aircraft Certification Process was released, and it seems like quite a few people – i.e. very vocal critics of Boeing and the FAA – are not likely to be pleased by the lack of lambasting language in the report. This is only the most recent development in the still-unfolding story of the Boeing 737 MAX passenger airliner, the aircraft at the center of the two fatal crashes in October 2018 and March 2019 that killed 346 people in total. The committee’s report has been released amid outcry over recently disclosed internal documents diplomatically labelled as “troubling” and reports of impending job cuts and layoffs from companies within the Boeing 737 MAX supply chain. “Troubling” may be putting it mildly.

“The Committee applauds the remarkable gains in safety achieved by U.S. aviation and recognizes the safety benefits provided to the worldwide aviation system. However, each member of the Committee fully acknowledges the two foundational premises that risk will always exist in aviation and that no fatality in commercial aviation is acceptable.”

Official Report of the Special Committee to review the FAA’s Aircraft Certification Process, Executive Summary, page 6

With all of this currently happening, now is a good time for a bit of background to get up to speed. On October 29, 2018, Indonesian Lion Air Flight 610 departed from Jakarta and crashed into the Java Sea twelve minutes later, killing all 189 passengers and crew on board. Less than five months later on March 10, 2019, Ethiopian Airlines Flight 302 departed from Addis Ababa and flew for only six minutes before plummeting directly into a field at almost 700 miles per hour. Once again, all passengers and crew on board, totaling 157 people, were killed in the crash.

In the interim between the two crashes, partial fault was tentatively attributed to malfunctions in one of the aircraft’s Angle of Attack (AOA) sensors (check out these sources for a relatively clear and more in-depth explanation of the technical side of this).The MAX was equipped with the Maneuvering Characteristics Augmentation System (MCAS), an automated system designed to activate and correct the problem when the AOA began to reach unsafe levels. Unfortunately, it didn’t quite work out that way. Erroneous AOA readings during both flights led to MCAS automatically activating, pitching the nose of the aircraft down while pilot and co-pilot fought to right the aircraft. This happened repeatedly until the planes ultimately crashed.

Today, in the aftermath of the two planes crashing, it’s understood that the single faulty AOA sensor and MCAS are among a number of factors that caused the accidents. Since then, Boeing and the FAA have had no shortage of critics. Going into the entire timeline of events would take quite a while, so here are some highlights: the MAX was grounded around the world and the grounding remains in effect today; Boeing reportedly misled FAA regulators as to the full extent of MCAS’s abilities and failed to mention the system in pilots’ manuals; and the international aviation community has come down hard on the FAA’s certification process, with some countries demanding changes before it will allow the MAX to return to service. (A timeline of pretty much everything can be found here.)

“The FAA’s certification system is a process sanctioned by Congress, driven by regulation, directed by the FAA, and implemented by certified organizations and individuals. It is an iterative, comprehensive process grounded in the cumulative expertise of the FAA gained through over a half century of process management and oversight.”

Official Report of the Special Committee to review the FAA’s Aircraft Certification Process, Executive Summary, page 6

Clearly, Boeing and the FAA are ready for the plot twists to come to an end and the Special Committee’s report must seem like a small point of light in an incredibly long, bleak, and dark night. My personal flair for dramatics aside, the report does seem to come to different conclusions than most. The Committee, made up of five aviation safety experts chosen by Secretary of Transportation Elaine Chao, was formed to review: 1) “the FAA’s product certification process, the use of delegated authority, and the approval and oversight of designees”, and 2) “the certification process applied to the Boeing 737 MAX 8, which occurred from 2012 to 2017.” While the report does provide a number of recommendations, the Committee ultimately came to the conclusions that the FAA’s current certification process based on delegated authority is good one and that the FAA and Boeing followed the required process in certifying the MAX.

“As reflected by the safety statistics cited above, the Committee found that the FAA’s certification system is effective and a significant contributor to the world’s safest aviation system.”

Official Report of the Special Committee to review the FAA’s Aircraft Certification Process, Executive Summary, page 6

The report also cautions against a complete overhaul of the FAA’s delegation of authority framework for the certification process. However, members of Congress couldn’t seem to disagree more, especially after a slew of internal communications showing Boeing employees saying some pretty damning things were released earlier this month – calling regulators ‘clowns’ is never a good call. One particularly vocal FAA critic and crusader for legislative action is Peter DeFazio (D-Ore.), Chair of the House Committee on Transportation and Infrastructure. Pulling no punches, DeFazio has stated that “the FAA rolled the dice on the safety of the traveling public” in allowing the MAX to fly despite knowing the risks.

“Any radical changes to this system could undermine the collaboration and expertise that undergird the current certification system, jeopardizing the remarkable level of safety that has been attained in recent decades.”

Official Report of the Special Committee to review the FAA’s Aircraft Certification Process, Executive Summary, page 8

The question now is how, or even if, this report will impact the calls for change. Recent plot twists caution that there’s no telling what will happen next.

Imagine that you and your friends go out for a night on the town. By the time you are well and tired, it seems as though everyone else simultaneously had the same idea. With everyone around you clamoring to call an Uber or Lyft, you and your friends take one look at the gridlocked streets and agree that the roads are just not the way to go tonight. However, the skies look clear and traffic-free, so why not take a helicopter across town? While this may seem like the start of a very odd joke, it’s a future that Los Angeles-based startup up Skyryse is looking to bring to the present and a reality that is closer than you might think.

“Skyryse is on a mission to get people where they want to be quickly, affordably and safely.”

Skyryse, Our Vision

While this may be enough to start stirring up the questions in your mind, here’s another twist to Skyrise’s plans for urban travel: fully automated flight. In mid-December Skyrise held a demonstration highlighting a helicopter that took off, flew for fifteen minutes, and then landed, all fully automated.

The demonstration showed a lot of what Skyryse has in mind for making urban air mobility a widely adopted norm for traveling short distances. For one, Skyryse unveiled its Skyryse Flight Stack, which “comprises of technology that automates flight in [Federal Aviation Administration]-approved helicopters, safety and communication systems, and a network of smart helipads to ultimately create a new transportation system.”

“Unlike other companies building autonomous vertical takeoff and landing (VTOL) aircraft from scratch or only for the military, Skyryse refits existing consumer-grade, dependable and certified aircraft and technologies with software and hardware innovations.”

PRNewswire.com

Simply put, Skyryse isn’t building new aircraft, it’s taking what already works and adding a little bit of spice. The company’s goal is to develop a fully autonomous VTOL flight system that can be installed in both legacy and future helicopter models, as well as helipads capable of communicating with the outfitted aircraft information such as changing weather conditions or low-flying objects. Skyryse aims to become the first fully operational air taxi service available to the public that doesn’t break the bank.

Now, you may be thinking that a self-flying helicopter is a ride on which you would rather not be a passenger but have no fear. Passengers on aircraft in Skyryse’s fleet are accompanied by a trained and certified pilot who oversees the flight system and can take over the controls in the event of an emergency or potential malfunction. While this does leave open the potential for awkward conversation, it does add an extra layer of safety and checks on the autonomous system.

I personally think this sounds incredible, if it can–no pun intended–get off the ground. Why not take to the skies to avoid the mad rush of cars and congestion of city streets? And why not use already available aircraft to do it? It all makes sense and seems pretty logical. However, we all know that logic does not always guarantee success.

My main concerns surround public perceptions and pricing. For perception, I am curious about the projected amount of time it will take before there is enough demand to justify a supply. How long will air taxi companies have to advertise and ultimately wait before enough people know about and trust their autonomous aircraft? As for pricing, the concerns and questions are probably pretty clear. How is this going to be affordable for everyone, and when? It has been reported that Skyryse plans to release the details of how it will achieve affordable pricing at some point this year. I for one am looking forward to the day when I can hop in line at a helipad and quickly fly across town, all without breaking the bank.

If there are any ideas that the internet believes to be the truth in this modern day in age, I think that the following would at least make the list: the government is likely watching you through the camera in your laptop, and Facebook’s algorithm may know you better than anyone else. While the internet normalizes being surveilled – and George Orwell can be heard continuously rolling over in his grave – the collection, analysis, and sale of information and user data is something to, at the very least, keep in mind.

Target can predict when a shopper is due to give birth based on subtle changes in shopping habits (going from scented to unscented soap, for example); your phone tracks where you are and how often you go to the point that it recognizes your patterns and routines, suggesting certain destinations you visit regularly; and health insurance companies believe they can infer that you will be too expensive to cover simply from looking at your magazine subscriptions, whether you have any relatives living nearby, and how much time you spend watching television. It is both fascinating and startling in equal measure.

When we narrow our focus to transportation and mobility, there is still an entire world of information that is being collected, sold, and turned into, for example, new marketing strategies for companies purchasing that data from brokers. Other times, the actor using that data-turned-actionable intelligence is a government entity. Either way, it’s good know and understand some of what is being collected and how it may be used, even if it’s only the tip of the iceberg. Car insurance companies track and collect data on how often drivers slam on brakes or suddenly accelerate and offer rewards for not doing those things. People have been subjected to police suspicion or even been arrested based on incorrect geolocation data collected from their cell phones.

Despite the potentially grim picture I may have painted, user data isn’t always wielded for evil or surveillance. Recently, popular navigation app Waze added a feature that allows its users to report unplowed roads plaguing drivers during the winter months. The feature was developed through collaboration with the Virginia Department of Transportation (VDOT). Users in areas with inclement winter weather are now notified when they are coming upon a roadway that is reportedly in need of a snowplow. In addition to providing users with information and warnings, Waze also partners with transportation agencies across the U.S. and provides these agencies or local governments with this winter transportation information through the Waze for Cities Data program. The point is to make responsible parties aware of the areas that are still in need of a snowplow and assist them in prioritizing and deploying resources.

This sort of data collection is innocent enough and helpful in a person’s everyday life. According to Waze, the data is anonymized and contains no personally identifiable information (PII) when it becomes accessible to government agencies. However, as cars and cities become smarter the risk of an individual user’s data being used for more concerning purposes is likely to increase. This danger is in addition to the privacy risks that come from carrying around and depending upon personal devices such as cell phones.

“[Cars are] data-collecting machines that patrol the streets through various levels of autonomy. That means that our mobility infrastructure is no longer static either, that infrastructure is now a data source and a data interpreter.”

Trevor English, InterestingEngineering.com

Uber went through a phase of tracking users even while not using the app; a number of smart city technologies are capable of capturing and combining  PII and household level data about individuals; and the City of Los Angeles wants to collect real-time data on your individual e-scooter and bikeshare trips – California’s legislature doesn’t exactly agree. As these capabilities are advancing, so is the law, but that doesn’t necessarily mean that the race is a close one. So, while our cars and scooters and rideshare apps may not yet be the modern iteration of Big Brother, there’s always tomorrow.

Last month FCC Chairman Ajit Pai announced a plan to allow unlicensed use of a 45-megahertz (MHz) chunk of the mid-band spectrum. How is this even close to related to mobility or transportation? In 1999, the FCC dedicated 75 MHz of the 5.9GHz band to vehicle-related communications and transportation safety, specifically to dedicated short-range communications (DSRC). Guess where that 45MHz portion is right now; you only get one try.

That’s right. Aiming for a 40-60 split in favor of unlicensed use, the FCC is cutting into the dedicated DSRC MHz to make room for what Chairman Pai likened to a “teenage phenom”. This reduction of the so-called “safety band” has garnered a healthy mix of responses, with the two opposing ends of the spectrum being vigorous support and scathing disbelief. For example:

“There’s always going to be something new just around the corner. If we’re going to be afraid to take advantage of the technology that’s available today to save lives, then we’re not doing our jobs.”

Carlos Braceras, Executive Director of Utah Department of Transportation

“The FCC is prepared to trade safer roads for more connectivity by giving away much of the 5.9GHz safety spectrum, and it proposes to make such an inexplicable decision in the absence of data. The Commission is prepared to put not just drivers but pedestrians and other vulnerable users, particularly first responders and those in work zones, at grave risk, and for what?”

Shailen Bhatt, President and CEO of ITS America

Let’s take a quick step back. What is actually is the DSRC spectrum? The DSRC spectrum addresses transportation safety via on-board and roadside wireless safety systems allowing vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. Essentially, it wants cars to talk to other cars and to traffic lights. However, the FCC has its sights set on a much larger goal: vehicle-to-everything communications (V2X).

Specifically, the plan proposes going beyond the practice of using short-wave technology, such as radios, in favor of prioritizing V2X using cellular technology (C-V2X), which is incompatible with DSRC.

“If it were a medicine, V2X might be considered a miracle drug capable of slowing down a public-health epidemic of U.S. traffic fatalities that last year numbered more than 36,000.”

Jeff Plungis, ConsumerReports.org

So you might assume that C-V2X tech would be getting a shot in the arm in the form of a 45MHz dedication. However, you’d be wrong. Chairman Pai’s remarks in November announced that the lower 45MHz are for unlicensed use. In particular, this would work toward addressing the ever-increasing demand for WiFi bandwidth. It was also proposed that the remaining 30MHz of the spectrum be dedicated to Intelligent Transportation Systems (ITS), with 20MHz to C-V2X and the remaining 10MHz potentially left to DSRC. Faster internet and lower chances of being hit by a car while crossing the road? It seems like finally being able to have our cake and eat it, too.

“So moving forward, let’s resist the notion that we have to choose between automotive safety and Wi-Fi. My proposal would do far more for both automotive safety and Wi-Fi than the status quo.”

Ajit Pai, FCC Chairman

But, of course, there are some drawbacks. Critics have pointed to a number of issues that they claim will come from splitting the safety band. For one, what about DSCR? Cities and municipalities may be sent back to square one in terms of smart transportation infrastructure developments and advancements is they focused their efforts on DSRC systems. Additionally, some auto-manufacturers may prefer C-V2X, but a number have already been installing DSCR systems, a potentially unworkable endeavor should this plan be put into action. The proposed plan doesn’t go as far as to kill DSCR, but some argue that it may as well.

The FCC’s concerns and proposed answers are admirable, but I can’t help but wonder how much of it is simply shiny paint covering tired wallpaper. For one, is the FCC’s true motivation actually addressing the lack of movement within the safety band for V2V, V2I, and V2X? Or, is it convenient? Chairman Pai indicated that this proposal came into being when the FCC was looking for contiguous swathes of the spectrum that it could open up for different types of unlicensed operations. While there is no doubt that jump starting transportation-related communications is important, the FCC’s dedication to transportation safety comes across as secondary.

I clearly don’t have answers, but these questions and others will hopefully be addressed as the FCC concludes the notice and comment period for the proposal and the next steps are taken.

Earlier this month, Connecticut’s Governor Ned Lamont announced and released the details of his plan to upgrade and “transform” the state’s transportation system. The plan, Connecticut 2030 (CT2030), allocates $21 billion primarily to improving Connecticut’s highways, airports, mass transit, and ports and is pitched as “what Connecticut families and employers deserve.” While that is a wonderful goal, as usual, I have questions. However, I want to go over the basics of CT2030 before getting into those questions.

“CT2030 will result in nothing short of a transformation of the economy and quality of life in Connecticut. When residents are able to travel to and from at drastically quicker rates, families can thrive, employees are more productive, and businesses are able to grow and provide more opportunities.”

Impact of CT2030

Overall, the main point of CT2030 seems to be enabling people and business to move more quickly and more efficiently. Gov. Lamont aims to achieve CT2030’s goals by addressing four main focus areas mentioned above: highways, airports, mass transit, and ports.

Highways. The main thrust of CT2030’s highway plans appear to center significantly on I-84, I-91, and I-95. This makes sense, seeing as to it that multiple spots along each of these highways rank within the top 100 worst traffic bottlenecks in the United States. These three highways will be the focus of projects such as lane additions, exit enhancements, bridge improvements, and “user fee” installations (i.e. tolls).

Mass Transit. This portion of CT2030 focuses on public transportation in the forms of railways and buses. Again, the plans here are “all about less time commuting and more time with your family.” Railways would look forward to projects for straightening and upgrading tracks, replacing aging bridges, installing new signaling systems, and adding new cars and locomotives. Buses, in a much smaller endeavor, would receive upgrades providing consistency for users across the state’s bus system. These upgrades include fitting all bus stops with shelters for protection against bad weather and signs with information on operating routes, as well as providing real-time information updates via text message or phone app.

Airports. This seems to be one of the most underdeveloped aspects of CT2030. The two enhancements to Connecticut’s aviation sector are (1) connecting the Bradley International Airport to surrounding areas via direct railway lines, and (2) the development of a “fully functioning regional airport in South-Central CT.”

Ports. Connecticut’s four major ports and the associated maritime industry annually generate an estimated $11.2 billion. The projects for these ports are unique to each location. They include dredging to allow for larger ships and freighters to pass through more frequently and the implementation of a high-speed ferry system to provide services for commuters as well as tourists.

Now for some questions:

What about induced demand? Congestion can’t always be solved by simply adding more lanes, no matter how logical that solution would seem. And it does make sense: remove the congestion by removing the bottleneck. However, this reasonable answer runs full speed into the issue of induced demand. The phenomenon of induced demand can be stated simply: “When you provide more of something, or provide it for a cheaper price, people are more likely to use it.” This means that increasing capacity does little to relieve busy roadways when traffic acts as a “gas” and the “volume expands to fill the capacity.”

“Widening a highway is no more a solution to traffic than buying bigger pants is a solution to overeating.”

David Andrew, Hartford Courant

While some experts argue that induced capacity doesn’t cause as much strife as people claim, the potential is still something that should be taken into account. If CT2030 centers on reducing highway commute time through widening projects, there needs to be at least some discussion addressing the possible negative impacts, such as an increase in urban sprawl, carbon emissions, and more.

What about pedestrian infrastructure? While CT2030 allocates approximately $21 billion to its various projects, only an estimated $52 million would be dedicated to the Community Connectivity Program (CCP), a “grant program for municipalities to make improvements to sidewalks” that “helps local communities make necessary improvements for pedestrians.” If my math is even close to correct – honestly, no promises – this amounts to less than half of a percent.

Admittedly, I’m using the term “pedestrian infrastructure” broadly to include traffic calming and bicycle infrastructure in addition to traditional pedestrian infrastructure while CT2030 narrows the scope of CCP down to sidewalk projects. However, this doesn’t defeat the question of why so little focus is dedicated to pedestrian infrastructure.

There are plenty of unanswered questions and unaddressed concerns still surrounding CT2030. One major question mark is whether it will actually be implemented. This is thanks to Gov. Lamont and state legislators starring in leading roles opposite one another in a multi-season drama. With this in mind, it will be interesting to see how and if Connecticut moves forward with CT2030 or any rival transportation plans.

On April 8, 2019, it was announced at the 35th Space Symposium in Colorado Springs, Colorado that the space industry was getting an Information Sharing and Analysis Center (ISAC). Kratos Defense & Security Solutions, “as a service to the industry and with the support of the U.S. Government,” was the first founding member of the Space-ISAC (S-ISAC).

“[ISACs] helps critical infrastructure owners and operators protect their facilities, personnel and customers from cyber and physical security threats and other hazards. ISACs collect, analyze and disseminate actionable threat information to their members and provide members with tools to mitigate risks and enhance resiliency.”

National Council of ISACs

ISACs, first introduced in Presidential Decision Directive-63 (PDD-63) in 1998, were intended to be the one aspect of the United States’ development of “measures to swiftly eliminate any significant vulnerability to both physical and cyber attacks on our critical infrastructures, including especially our cyber systems.” PDD-63 requested “each critical infrastructure sector to establish sector-specific organizations to share information about threats and vulnerabilities.” In 2003, Homeland Security Presidential Directive 7 (HSPD-7) reaffirmed the relationship between the public and private sectors of critical infrastructure in the development of ISACs.

Today, there are ISACs in place for a number of subsectors within the sixteen critical infrastructure sectors, for specific geographic regions, and for different levels of government.

However, the S-ISAC, while undoubtedly a good call, has left me with a few questions.

Why so much government involvement?

From what I’ve read, the Federal government’s role is to “collaborate with appropriate private sector entities and continue to encourage the development of information sharing and analysis mechanisms.” For example, the Aviation-ISAC (A-ISAC) was formed when “[t]here was consensus that the community needed an Aviation ISAC”; the Automotive-ISAC (Auto-ISAC) came into being when “[fourteen] light-duty vehicle [Original Equipment Manufacturers] decided to come together to charter the formation of Auto-ISAC”; and the Information Technology-ISAC (IT-ISAC) “was established by leading Information Technology Companies in 2000.”

Reportedly, it was not the private actors within the space industry that recognized or felt the need for the S-ISAC, but an interagency body designed to keep an eye on and occasionally guide or direct efforts across space agencies. The Science and Technology Partnership Forum has three principle partner agencies: U.S. Air Force (USAF) Space Command, the National Aeronautics and Space Administration (NASA), and the National Reconnaissance Office (NRO).

Additionally, it appears as though Kratos, a contractor for the Department of Defense and other agencies, was the only private actor involved in the development and formation of the S-ISAC.

These are just something to keep in mind. The S-ISAC’s perhaps unique characteristics must be considered in light of the clear national security and defense interests that these agencies and others have in the information sharing mechanism. Also, since the announcement of the S-ISAC, Kratos has been joined by Booz Allen Hamilton, Mitre Corporation, Lockheed Martin, and SES as founding members.

Why an ISAC?

Again, ISACs are typically the domain of the private owners, operators, and actors within an industry or sector. As new vulnerabilities and threats related to the United States’ space activities have rapidly manifested in recent years and are quickly emerging today, it would seem to make sense for the Federal government to push for the development of an Information Sharing and Analysis Organization (ISAO). ISAOs, formed in response to Executive Order 13691 (EO 13691) in 2015, are designed to enable private companies and federal agencies “to share information related to cybersecurity risks and incidents and collaborate to respond in as close to real time as possible.”

While ISAOs and ISACs share the same goals, there appear to be a number of differences between the two information-sharing mechanisms. ISACs can have high membership fees that individual members are responsible for, potentially blocking smaller organizations or new actors from joining, and that often work to fund the sector’s ISAC; however, grants from the Department of Homeland Security (DHS) are available to provide additional funding for the establishment and continued operation of ISAOs.  ISACs – for example, the A-ISAC – seem to monitor and control the flow of member-provided information available to the Federal government more closely than ISAOs.

Also, ISACs – such as those recognized by the National Council of ISACs (NCI) – are typically limited to sectors that have been designated as Critical Infrastructure and the associated sub-sectors. Despite obvious reasons why it should, space has not been recognized as a critical infrastructure sector.

For now, this seems like a good place to end. This introductory look into ISACs generally and the S-ISAC has left me with many questions about the organization itself and its developing relationship with the private space industry as a whole. Hopefully, these questions and more will be answered in the coming days as the S-ISAC and the private space industry continue to develop and grow. 

Here are some of my unaddressed questions to consider while exploring and considering the new S-ISAC: Why develop the S-ISAC now? What types of companies are welcome to become members, only defense contractors or, for example, commercial satellite constellation companies and small rocket launchers? As the commercial space industry continues to grow in areas such as space tourism, will the S-ISAC welcome these actors as well or will we see the establishment of a nearly-identical organization with a different name?

Nowadays it seems like everyone wants to get in on the rapidly-growing commercial space industry, reportedly worth approximately $340 billion per year. From Stratolaunch Systems’ “world’s largest plane, which acts as a launch pad in the sky,” to NASA’s Space Act Agreements (SAA) with Boeing and SpaceX for taxi services to and from the International Space Station (ISS), this is certainly not your parents’ space race.

While the private space industry of today may not have bloomed until after we entered the 21st century, the United States’ love affair with space activities in the private sector can be traced back to the 1960’s, although it was the passage of the Commercial Space Launch Act in 1984 that really lit a fire under private industry. It goes without saying that a lot has changed in the years between then and now.

As a matter of fact, the private space sector as we know it today has a term all its own: NewSpace.

“Alt.space, NewSpace, entrepreneurial space, and other labels have been used to describe approaches to space development that different significantly from that taken by NASA and the mainstream aerospace industry.”

HobbySpace.com

NewSpace is a move away from the traditional understanding of space being the domain of government agencies alone and a step toward more affordable access to space. This transition has allowed for the incredible growth and expansion of the economic endeavors within the private space sector, and it’s only expected to get bigger and more profitable as time and developments continue to advance.

However, beyond the incredible news stories about “the world’s first commercial Spaceline” and Elon Musk sending his car into space – which you can track here, by the way – there is an entire universe of issues and concerns that do and/or will cause hiccups and delays to entering the first space tourists into orbit.

One of the first concerns that comes to mind is often that of safety. Saying that there are a few safety concerns relating to commercial space transportation would be putting it very, very lightly. Risks and dangers plague every step of the process, from launchpad to landing. I am all for scientific inquiry and experimentation, but unfortunately this is one area where trial and error has a good chance of ending in both the loss of equipment and the loss of life.

Commercial space transportation is still a fairly high-risk industry in terms of safety, and the responsibility to develop safety regulations for the U.S. commercial space transportation industry rests with the Federal Aviation Administration (FAA) Office of Commercial Space Transportation (AST). The AST issues licenses and experimental permits for launch or reentry vehicles and spaceports after the issuance of a safety approval.

According to the AST website, the FAA “has the authority to issue a safety approval for one or more of the following safety elements: a launch vehicle, a reentry vehicle, a safety system, process, service, or any identified component thereof, and qualified and trained personnel performing a process or function related to licensed launch activities.”

I will stop myself here (for now), but this is just a drop in the bucket. There are plenty of topics surrounding commercial space flight that this post didn’t discuss, such as issues with funding, the minefield that is space debris, and the question of whose law governs in space. While this may seem like a lot, be reassured by the fact that this means we all may have the chance to live out that childhood (adulthood) dream of being an astronaut.