March 2020

It feels like much longer than two months ago that I first wrote about the coronavirus, Covid-19. At the time of my first blog post on the subject, the world had just witnessed China quarantine more than 50 million people in four weeks. The United States is now under conditions that significantly exceed that number. As of March 26th, more than 20 U.S. states have imposed either statewide orders, or partial orders, for residents to stay at home and shelter in place. Currently, more than 196 million citizens are being urged to stay at home. Social Distancing, Zoom, and Flatten the Curve have become household names and phrases overnight. As I write this, millions of citizens are entering their second or third week of working from home.

As the United States reckons with this outbreak’s severity and we learn to live at a distance, it is crucial to reflect on the unintended secondary effects that have become apparent from en masse “work from home” (“WFH”). Perhaps we can learn something. Perhaps it is just refreshing to note them. Perhaps it could provide inspiration for solutions to many problems we are already facing or will one day face.

Traffic Reductions

Traffic in various cities across the world has decreased dramatically. With millions of people working from home for the foreseeable future, there are fewer cars on the road during traditional rush hour peaks. Traffic in Chicago is moving as much as 60% faster; traffic in Los Angeles is moving 35% more quickly than usual.  8am LA rush hour traffic was flowing around 60 miles per hour, while it typically dips down to 30 mph. Roughly the same increase in speed was measured during the evening commute hour.

Pollution Reduction

A decrease in rush hour traffic was an easily predicted effect of mass-quarantining. One unintended side effect is the sharp decrease in pollution over major cities. There has been a severe downturn in Nitrogen Dioxide (“NO2“) — a significant pollutant released from the burning of fossil fuels — over Los Angeles, Seattle, and New York. The same significant drop in NO2 has been seen over China around Wuhan, Shanghai, and Beijing.

This decrease in pollution and an increase in traffic speeds reflect the anticipated benefits of autonomous vehicles. One of the benefits of AVs is the decrease in emissions that come from daily commutes. Most autonomous vehicle manufacturers and testers use electric vehicles because the electrical power the advanced computer systems draw exceeds the capacity of most car batteries. An increase in electric vehicles on the roads will decrease fossil fuels being burned while driving, which would likely lead to a reduction in pollutants (like NO2) over concentrated areas over roadways.

Another benefit of AVs is the decrease in traffic time. Vehicles the communicate with other vehicles (“V2V”) or that communicate with infrastructure (“V2I”) will, over time, allow for fewer slowdowns and higher average driving speeds. Because vehicles can communicate when they are slowing down, speeding up, turning, exiting, etc. the flow of highway traffic will become smoother as fewer interruptions cause human drivers to hit the breaks or come to a standstill. AVs that platoon in synchronization can also increase traffic speeds.

One of the much-touted benefits of autonomous vehicles is the increased productivity that a driver can experience by freeing up their attention and hands from needing to drive and monitor their vehicle. Although not to the same scale, faster traffic speeds from increased WFH translates into less time wasted on a commute and more time with family and at work. The same is true of WFH; my daily commute has changed from a 15-minute walk to the law school to a 15-second walk from the kitchen up to my desk. 

One metric I am interested in seeing after the Covid-19 social distancing and en masse WFH is worker productivity while working from home. If workers are similarly (or more) productive when working from home, we could see an uptick in companies allowing employees to WFH weekly, or even on an unlimited basis (subject to approval of some sort). Similarly, if some of the benefits that AVs seek to bring — decreased traffic, reduced pollution, increased productivity — can be achieved through en masse WFH, should AV proponents, and others interested in these benefits, be advocating for more WFH in other contexts? Companies could even use WFH to advertise their “green” efforts, by touting the number of driven miles and pollutants they eliminate annually by requiring employees to WFH periodically.

If we anticipate future events like Covid-19, where social distancing becomes crucial, keeping WFH skills sharp may become a necessity. Allowing or requiring workers to stay home one or more days per week could be a method to keep those skills sharp: being productive at home, efficient communication online, and keeping in contact with employees and supervisors. As this crisis continues to unfold, it is essential to remember that this round of social distancing will not last forever. As a country, we will emerge from this crisis changed. How we change is interesting to project, but it is similarly essential to aid in preventing future problems and adapting future solutions.

Last week, the United States declined to sign the “Stockholm Declaration,” an international agreement to set targets for reducing road fatalities. The reason given for not signing the declaration was the U.S.’s objection to items within the document that referenced climate change, equity, gender equality, and other issues. For context, here is the paragraph they are referencing:

[Signatories resolve to] “[a]ddress the connections between road safety, mental and physical health, development, education, equity, gender equality, sustainable cities, environment and climate change, as well as the social determinants of safety and the interdependence between the different [Sustainable Development Goals (“SDGs”)], recalling that the SDGs and targets are integrated and indivisible;”

This is an abdication of responsibility on the part of the American government, and ignores the real social, economic, and climate issues that are deeply tied to transportation. This piece is the first in a series, in which I will touch on how transportation, especially the emerging mobility technologies we usually cover, are entwined with issues that the current Administration sees as beyond the scope of road safety. This is not meant to be an exhaustive list, but rather a few examples offered as proof of the complexity of the issues. For today we’ll consider the environmental issues that are tied to road safety.

Road Safety and the Environment

Much has been made of how CAVs and other new mobility technologies can reduce greenhouse emissions via electrification of transportation and gained efficiencies through coordination between vehicles and infrastructure. The pursuit of safer roads via CAV deployment is also the pursuit of “greener” roads. This is especially important in the face of a recent study that found the use of rideshares like Lyft and Uber are increasing emissions – by an estimated 69%. The study found that rideshare usage shifted trips that would have been undertaken by mass transit, biking, or walking. Any discussion of the future of road safety, especially in cities, will have to include discussions of ridesharing, and how to better integrate biking, walking, and things like micro-mobility services into our streets, an integration that has important environmental implications.

The deployment of electric vehicles, something that appears to be a goal of major auto manufacturers, is another area in which road safety and the environment meet. To start with, these vehicles reduce overall vehicle emissions, which themselves are a health hazard. While not traditionally part of the road safety discussion, recent studies have shown that outdoor air pollution reduces the average life expectancy world-wide by almost 3 years. Including emissions in the safety conversation is especially important as vehicles are now the largest carbon producers.

Electric vehicles have other positive safety features – their large batteries, for example, make them less likely to roll over in an accident. On the other hand, electric vehicles traveling at low speeds can be harder for pedestrians and others to hear. In response, NHTSA has now mandated that EVs be equipped to generate artificial sound to warn those around them.

These are just a few ways in which environmental issues cross over into road safety, as recognized by the signatories to the Stockholm Declaration, and it is imperative the U.S. government take them into consideration rather than dismissing them outright.

The California DMV recently released several 2019 reports from companies piloting self-driving vehicles in California. Under state law, all companies actively testing autonomous vehicles on California public roads must disclose the number of miles driven and how often human drivers were required to retake control from the autonomous vehicle. Retaking control is known as “disengagement.” The DMV defines disengagements as:

“[D]eactivation of the autonomous mode when a failure of the autonomous technology is detected or when the safe operation of the vehicle requires that the autonomous vehicle test driver disengage the autonomous mode and take immediate manual control of the vehicle.”

Because of the proprietary nature of autonomous vehicle testing, data is not often publicly released;  this is one of the few areas where progress data is made publicly available. The 60 companies actively testing in California cumulatively traveled 2.88 million miles in 2019. The table below reports the various figures for some of the major testers in California.

Company Vehicles Active in CA Miles Driven in 2019 Engagements Engagements per 1,000 miles Average Miles Between Engagements
Waymo 153 1.45 Million 110 0.076 13,219
GM Cruise 233 831,040 68 0.082 12,221
Apple 66 7,544 64 8.48 118
Lyft 20 42,930 1,667 38.83 26
Aurora ? 13,429 142 10.57 95
Nuro 33 68,762 34 0.494 2,024
Pony.ai 22 174,845 27 0.154 6,493
Baidu 4 108,300 6 0.055 18,181
Tesla 0 0 0 0 0

What these numbers make clear is that there are several contenders who have made significant progress in the autonomous vehicle space, and there are some contenders which are not yet so competitive. Companies like Waymo, GM Cruise, and Baidu (which also tests extensively in China) have made incredible progress in decreasing the frequency at which a driver must engage with an automated vehicle. Others, like Apple, Lyft, and Aurora, while making progress, are nowhere near as sophisticated in avoiding engagements yet. Noticeably Tesla, the manufacturer frequently in the news for its “Autopilot” feature, does not test on public roads in California. The company says it conducts tests via simulation, on private test tracks, public roads around the world, and “shadow-tests” by collecting anonymized data from its customers during normal driving operations.

What these numbers seem to illustrate is that the autonomous vehicle industry is not all on par, as many often believe. It is often said that Henry Ford did not conceive the idea of an automobile; he perfected it. Similarly, companies like Waymo or GM may be the first to perfect autonomous vehicles, and gain an incredible market advantage once they do so. They are striving to be the Ford’s in this space, while others look like they’re still manufacturing carriages. However, despite these impressive numbers from a select few, the companies themselves think these metrics “do[] not provide relevant insights” (per Waymo) and that the idea that they give any “meaningful insight . . . is a myth” (per GM Cruise).

Why are the head and shoulder leaders on these metrics saying that they provide very little indication of progress on the technology? Disengagement reports may not be the best way for these companies to build trust and credibility in their products. They are only transparent in that they provide some data with no detail or context.

I was having a conversation about these disengagement numbers with a colleague* this week, and the topic of driver distraction arose. In the CA tests, the driver is constantly alert. Once these vehicles are in use for the general public, a notification to engage may not be effective if the driver is distracted. One reason these numbers do not provide particularly useful information is that for the metrics to be useful, at least two things must be true:

  • If the vehicle does not indicate it needs to disengage, no technical errors have been made; and
  • The driver is paying attention and can quickly engage when necessary.

In California testing, the drivers behind the vehicle are always alert and ready to take over. They may take over when the vehicle indicates they must, because of a malfunction or poor conditions. The driver can also engage when the vehicle has done something incorrectly, yet does not indicate that the driver needs to take over. This could include veering into a lane or failing to recognize a pedestrian.

One of the allures of autonomous vehicles is that a driver may not need to be 100 percent engaged for the vehicle to function correctly. However, current technology has not yet achieved this  result, as reiterated this past week by the National Transportation Safety Board (NTSB). The NTSB is an independent federal agency, which lacks enforcement power, but makes recommendations which are considered thorough and are taken seriously by policymakers.

The NTSB put forward many findings on Tuesday, February 25th regarding a Tesla crash that killed a California driver in March 2018. (A synopsis of the NTSB report and findings can be found here.) The facts of the crash involved driver of a Tesla in Autopilot mode, which struck a barrier between the highway and a left exit lane. NTSB found that the Tesla briefly lost sight of the lines marking the highway lane, and started to follow the right-most lane marker of the exit lane (because of fading on the highway lines) caused the vehicle to enter the “gore area.” This same action had apparently occurred several times in this exact vehicle, but the driver on previous trips was paying attention and was able to correct the vehicle. This time, the driver was playing a mobile game and did not correct the vehicle, causing the crash. Here was how NTSB presented three of their findings:

The Tesla’s Autopilot lane-keeping assist system steered the sport utility vehicle to the left into the neutral area of the gore, without providing an alert to the driver, due to limitations of the Tesla Autopilot vision system’s processing software to accurately maintain the appropriate lane of travel. (emphasis added)

The driver did not take corrective action when the Tesla’s Autopilot lane-keeping assist system steered the vehicle into the gore area, nor did he take evasive action to avoid the collision with the crash attenuator, most likely due to distraction by a cell phone game application. (emphasis added)

The Tesla Autopilot system did not provide an effective means of monitoring the driver’s level of engagement with the driving task.

Here we see a combined failure of both (1) and (2) presented above, combined with an inability to adequately monitor driver engagement. The vehicle took an action which it assumed to be correct, and thus did not notify the driver to take over. This combined with the driver not paying attention, failing to notice the need to disengage, and resulted in the crash. This tragic accident highlights that the AV industry still has many areas to improve before higher SAE level vehicles are ready for mass adoption. (The ADAS on the Tesla was SAE Level 2)

As I discussed last week, the federal Department of Transportation has taken a rather hands-off approach to regulation of automated vehicles, preferring to issue guidance rather than mandatory regulations. The  National Transportation Safety Board (NTSB) criticized this approach in their Tesla crash findings. The NTSB wrote that there has been “ Insufficient Federal Oversight of Partial Driving Automation Systems.”

The US Department of Transportation and the National Highway Traffic Safety Administration (NHTSA) have taken a nonregulatory approach to automated vehicle safety. NHTSA plans to address the safety of partial driving automation systems through enforcement and a surveillance program that identifies safety-related defect trends in design or performance. This strategy must address the risk of foreseeable misuse of automation and include a forward-looking risk analysis.

Because the NTSB lacks enforcement power, it cannot compel industry actors or other government agencies to take any action. It can only perform investigations and make recommendations. NTSB Chairman Robert Sumwalt had much to say regarding distracted driving, the AV industry, and the lack of government regulations in the hearing on Tuesday, February 25th.

“In this crash we saw an over-reliance on technology, we saw distraction, we saw a lack of policy prohibiting cell phone use while driving, and we saw infrastructure failures, which, when combined, led to this tragic loss,”

“Industry keeps implementing technology in such a way that people can get injured or killed . . . [I]f you own a car with partial automation, you do not own a self-driving car. Don’t pretend that you do.”

“This kind of points out two things to me. These semi-autonomous vehicles can lead drivers to be complacent, highly complacent, about their systems. And it also points out that smartphones manipulating them can be so addictive that people aren’t going to put them down,”

Chairman Sumwalt is right to be frustrated. The DOT and NHTSA have not regulated the AV industry, or ADAS as they should. Tragic accidents like this can be avoided through a variety of solutions; better monitors of driver engagement than torque-sensing steering wheels, lock-out functions for cell-phones when driving, stricter advertising and warning regulation by companies offering ADAS. Progress is being made in the AV industry, and automated vehicles are getting smarter and safer every day. But incidents like this that combine a failure of technology, regulation, and consumer use, do not instill public confidence in this incredible technology that will be beneficial to society. It only highlights how much farther we still have to go.

*I would like to thank Fiona Mulroe for the inspiration to take this approach to the disengagement report